Что такое Большой адронный коллайдер и для чего он нужен? Адронный коллайдер зачем нужен? Для чего нужен большой адронный коллайдер Большой адронный коллайдер для он.

Определение большого адронного коллайдера звучит так: БАК является ускорителем заряженных частиц, и создан он с целью разгона тяжелых ионов и протонов свинца, и исследования тех процессов, которые происходят при их столкновении. Но зачем это нужно? Таит ли в себе это какую-то опасность? В этой статье мы и будем отвечать на эти вопросы, и попробуем понять, зачем нужен большой адронный коллайдер.

Что собой представляет БАК

Большой адронный коллайдер – это огромнейший тоннель кольцеобразной формы. Он похож на большую трубу, которая разгоняет частицы. Находится БАК под территорией Швейцарии и Франции, на глубине 100 метров. Ученые всего мира принимали участие в его создании.

Цель его постройки:

  • Найти бозон Хиггса. Это механизм, который наделяет частицы массой.
  • Изучение кварков – это фундаментальные частицы, которые входят в состав адронов. Поэтому и название коллайдера «адронный».

Многие думают, что БАК является единственным ускорителем в мире. Но это далеко не так. Начиная с 50-х годов 20 века в мире построен не один десяток подобных коллайдеров. Но большой адронный коллайдер считается самым масштабным сооружением, длина его составляет 25,5 км. Кроме этого, в него входит еще один ускоритель, меньший по размеру.

СМИ о БАК

В СМИ, еще с начала создания коллайдера, появилось огромное количество статей об опасности и дороговизне ускорителя. Основная масса людей считает, что деньги потрачены зря, они не могут понять, зачем тратить столько средств и сил на поиски какой-то частицы.

  • Большой адронный коллайдер не является самым дорогим научным проектом в истории.
  • Основная цель этой работы - бозон Хиггса, для открытия которого и созданадронный коллайдер. Результаты этого открытия принесут человечеству множество революционных технологий. Ведь изобретение сотового телефона тоже когда-то было встречено негативно.

Принцип работы БАК

Рассмотрим, как выглядит работа адронного коллайдера. Он на больших скоростях сталкивает пучки частиц, а затем следит за их последующим взаимодействием и поведением. Как правило, на вспомогательном кольце сначала разгоняется один пучок частиц, а уже после этого он отправляется в кольцо основное.

Внутри коллайдера частицы удерживают множество сильнейших магнитов. Так как столкновение частиц происходит за доли секунды, то их перемещение фиксируют высокоточные приборы.

Организацией, которая осуществляет работу коллайдера, является ЦЕРН. Именно она, 4 июля 2012 года, после огромных денежных вложений и трудов, официально объявила о том, что бозон Хиггса таки найден.

Зачем БАК нужен

Теперь необходимо понять, что же дает БАК обычным людям, зачем адронный коллайдер нужен.

Открытия, связанные с бозоном Хиггса и изучение кварков, могут привести в перспективе к новой волне научно-технического прогресса.

  • Грубо говоря, масса является энергией в состоянии покоя, а значит, в будущем есть возможность преобразовать материю в энергию. И, следовательно, не будет проблем с энергией и появится возможность межзвездных путешествий.
  • В будущем изучение квантовой гравитации позволит управлять гравитацией.
  • Это дает возможность подробнее изучить М-теорию, которая утверждает, что в мироздание входит 11 измерений. Это изучение позволит глубже понять строение Вселенной.

О надуманной опасности адронного коллайдера

Как правило, люди боятся всего нового. Опасения у них вызывает и адронный коллайдер. Опасность же его надумана и разжигается в СМИ людьми, не имеющими естественно-научного образования.

  • В БАК сталкиваются адроны, а не бозоны, как пишут некоторые журналисты, пугая людей.
  • Подобные приборы работают уже много десятилетий и приносят не вред, а пользу науке.
  • Предположение о столкновении протонов с высокими энергиями, в результате которых могут возникнуть черные дыры, опровергается квантовой теорией гравитации.
  • В черную дыру может коллапсировать только звезда в 3 раза тяжелее солнца. Так как в солнечной системе таких масс нет, то и черной дыре неоткуда возникнуть.
  • Из-за той глубины, на которой находится коллайдер под землей, его излучение не представляет опасности.

Мы узнали, что такое БАК и для чего нужен адронный коллайдер и поняли, что опасаться его не стоит, а лучше ждать открытий, которые сулят нам большой технический прогресс.

Словосочетание «Большой адронный коллайдер» настолько глубоко осело в массмедиа, что о данной установке знает подавляющее количество людей, в числе которых и те, чья деятельность никоим образом не связано с физикой элементарных частиц, и с наукой вообще.

Действительно, столь масштабный и дорогой проект не мог обойти стороной СМИ - кольцевая установка длиной почти в 27 километров, ценою в десяток миллиардов долларов, с которой работает несколько тысяч научных сотрудников со всего мира. Немалую лепту в популярность коллайдера внесла так называемая «частица Бога» или бозон Хиггса, который был успешно разрекламирован, и за который Питер Хиггс получил нобелевскую премию по физике в 2013-м году.

Прежде всего следует отметить, что Большой адронный коллаейдер не строился с нуля, а возник на месте своего предшественника — Большого электрон-позитронного коллайдера (Large Electron-Positron collider или LEP). Работа над 27-микилометровом тоннелем началась в 1983-м году, где в дальнейшем планировалось расположить ускоритель, который будет осуществлять столкновение электроном и позитронов. В 1988-м году кольцевой тоннель сомкнулся, при этом рабочие подошли к проведению тоннеля столь тщательно, что расхождение между двумя концами тоннеля составило всего 1 сантиметр.

Ускоритель проработал до конца 2000-го года, когда достиг своего пика - энергии в 209 ГэВ. После этого начался его демонтаж. За одиннадцать лет своей работы LEP принес физике ряд открытий, в числе которых - открытие W и Z бозонов и их дальнейшие исследования. На основе результатов этих исследований был сделан вывод о сходстве механизмов электромагнитного и слабого взаимодействий, вследствие чего начались теоретические работы по объединению этих взаимодействий в электрослабое.

В 2001-м году на месте электрон-позитронного ускорителя началась постройка Большого адронного коллайдера. Строительство нового ускорителя завершилось в конце 2007-го года. Он располагался на месте LEP - на границе между Францией и Швейцарией, в долине Женевского озера (в 15 км от Женевы), на глубине ста метров. В августе 2008-го года начались испытания коллайдера, а 10-го сентября произошел официальный запуск БАКа. Как и в случае с предыдущим ускорителем, строительство и работа с установкой возглавляется Европейской организацией по ядерным исследованиям - ЦЕРН.

ЦЕРН

Вкратце стоит сказать об организации CERN (Conseil Européenne pour la Recherche Nucléaire). Данная организация выступает в роли крупнейшей мировой лаборатории в области физики высоких энергий. Включает три тысячи постоянных сотрудников, и еще несколько тысяч исследователей и ученых из 80 стран принимают участие в проектах ЦЕРНа.

На данный момент участниками проекта является 22 страны: Бельгия, Дания, Франция, Германия, Греция, Италия, Нидерланды, Норвегия, Швеция, Швейцария, Великобритания - учредители, Австрия, Испания, Португалия, Финляндия, Польша, Венгрия, Чехия, Словакия, Болгария и Румыния - присоединившиеся. Однако, как уже было сказано выше - еще несколько десятков стран так или иначе принимают участие в работе организации, и в частности - на Большом адронном коллайдере.

Как работает Большой адронный коллайдер?

Что такое Большой адронный коллайдер и как он работает - основные вопросы, интересующие общественность. Рассмотрим эти вопросы далее.

Коллайдер (collider) - в переводе с английского означает «тот, кто сталкивает». Задача такой установки состоит в столкновении частиц. В случае с адроннмы коллайдером, в роли частиц выступают адроны - частицы, участвующие в сильном взаимодействии. Таковыми являются протоны.

Получение протонов

Долгий путь протонов берет свое начало в дуоплазматроне - первой ступени ускорителя, куда поступает водород в виде газа. Дуоплазматрон представляет собой разрядную камеру, где через газ проводится электрический разряд. Так водород, состоящий всего из одного электрона и одного протона, теряет свой электрон. Таким образом образуется плазма - вещество, состоящее из заряженных частиц - протонов. Конечно, получить чистую протонную плазму сложно, поэтому далее образованная плазма, включающая также облако молекулярных ионов и электронов, проходит фильтрацию для выделения облака протонов. Под действием магнитов протонная плазма сбивается в пучок.

Предварительный разгон частиц

Новообразованный пучок протонов начинает свой путь в линейном ускорителе LINAC 2, который представляет собой 30-тиметровое кольцо, последовательно увешенное несколькими полыми цилиндрическими электродами (проводниками). Создаваемое внутри ускорителя электростатическое поле градуировано таким образом, что частицы между полыми цилиндрами всегда испытывают ускоряющую силу в направлении следующего электрода. Не углубляясь целиком в механизм разгона протонов на данном этапе, отметим лишь, что на выходе с LINAC 2 физики получают пучок протонов с энергией 50 МэВ, которые уже достигают 31% скорости света. Примечательно, что при этом масса частиц возрастает на 5%.

К 2019-2020-му году планируется замена LINAC 2 на LINAC 4, который будет разгонять протоны до 160 МэВ.

Стоит отметить, что на коллайдере также разгоняют ионы свинца, которые позволят изучить кварк-глюонную плазму. Их разгоняют в кольце LINAC 3, аналогичном LINAC 2. В дальнейшем также планируются эксперименты с аргоном и ксеноном.

Далее пакеты протонов поступают в протон-синхронный бустер (PSB). Он состоит из четырех наложенных колец диаметром 50 метров, в которых располагаются электромагнитные резонаторы. Создаваемое ими электромагнитное поле имеет высокую напряженность, и проходящая через него частица получает ускорение в результате разности потенциалов поля. Так спустя всего 1,2 секунды частицы разгоняются в PSB до 91% скорости света и достигают энергии в 1,4 ГэВ, после чего поступают в протонный-синхротрон (PS). Диаметр PS составляет 628 метров и оснащен 27 магнитами, направляющими пучок частиц по круговой орбите. Здесь частиц протоны достигают 26 ГэВ.

Предпоследним кольцом для разгона протонов служит Суперпротонный-синхротрон (SPS), длина окружности которого достигает 7 километров. Будучи оснащенным 1317-ю магнитами SPS разгоняет частицы до энергии в 450 ГэВ. Спустя примерно 20 минут пучок протонов попадает в основное кольцо - Большой адронный коллайдер (LHC).

Разгон и столкновение частиц в LHC

Переходы между кольцами ускорителей происходят посредством электромагнитных полей, создаваемых мощными магнитами. Основное кольцо коллайдеро состоит из двух параллельных линий, в которых частицы движутся по кольцевой орбите в противоположном направлении. За сохранение круговой траектории частиц и направление их в точки столкновения отвечают около 10 000 магнитов, масса некоторых из них достигает 27 тонн. Во избежание перегрева магнитов используется контур гелия-4, по которому протекает примерно 96 тонн вещества при температуре -271,25 ° С (1,9 К). Протоны достигают энергии в 6,5 ТэВ (то есть энергия столкновения - 13 ТэВ), при этом их скорость на 11 км/ч меньше скорости света. Таким образом за секунду пучок протонов проходит большое кольцо коллайдера 11 000 раз. Прежде, чем произойдет столкновение частиц, они будут циркулировать по кольцу от 5 до 24 часов.

Столкновение частиц происходит в четырех точках основного кольца LHC, в которых располагаются четыре детектора: ATLAS, CMS, ALICE и LHCb.

Детекторы Большого адронного коллайдера

ATLAS (A Toroidal LHC ApparatuS)

— является одним из двух детекторов общего назначения на Большом адронном коллайдере (LHC). Он исследует широкий спектр физики: от поиска бозона Хиггса до частиц, которые могут составлять темную материю. Хотя он имеет те же научные цели, что и эксперимент CMS, ATLAS использует иные технические решения и другую конструкцию магнитной системы.

Пучки частиц из LHC сталкиваются в центре детектора ATLAS, образуя встречные обломки в виде новых частиц, которые вылетают из точки столкновения во всех направлениях. Шесть различных детектирующих подсистем, расположенных в слоях вокруг точки столкновения, записывают пути, импульс и энергию частиц, позволяя их индивидуально идентифицировать. Огромная система магнитов искривляет пути заряженных частиц, так что их импульсы можно измерить.

Взаимодействия в детекторе ATLAS создают огромный поток данных. Чтобы обработать эти данные, ATLAS использует расширенную «триггерную» систему, позволяющую сообщать детектору, какие события записывать, а какие игнорировать. Затем для анализа зарегистрированных событий столкновения используются сложные системы сбора данных и вычисления.

Детектор имеет высоту 46 метров и ширину - 25 метров, при этом его масса составляет 7 000 тонн. Эти параметры делает ATLAS самым большим детектором частиц, когда-либо созданным. Он находится в тоннеле на глубине в 100 м вблизи главного объекта ЦЕРН, недалеко от деревни Мейрин в Швейцарии. Установка состоит из 4 основных компонентов:

  • Внутренний детектор имеет цилиндрическую форму, внутреннее кольцо находится всего в нескольких сантиметрах от оси проходящего пучка частиц, а внешнее кольцо имеет диаметр в 2,1 метра и длину 6,2 метра. Он состоит из трех различных систем датчиков, погруженных в магнитное поле. Внутренний детектор измеряет направление, импульс и заряд электрически заряженных частиц, образующихся при каждом протон-протонном столкновении. Основные элементы внутреннего детектора: пиксельный детектор (Pixel Detector), полупроводниковая система слежения (Semi-Conductor Tracker, SCT) и трековый детектор переходного излучения (Transition radiation tracker, TRT).

  • Калориметры измеряют энергию, которую частица теряет, когда проходит через детектор. Он поглощает частицы, возникающие при столкновении, тем самым фиксирую их энергию. Калориметры состоят из слоев «поглощающего» материала с высокой плотностью — свинца, чередующегося со слоями «активной среды» — жидкого аргона. Электромагнитные калориметры измеряют энергию электронов и фотонов при взаимодействии с веществом. Адронные калориметры измеряют энергию адронов при взаимодействии с атомными ядрами. Калориметры могут останавливать большинство известных частиц, кроме мюонов и нейтрино.

LAr (Liquid Argon Calorimeter) — калориметр ATLAS

  • Мюонный спектрометр - состоит из 4000 индивидуальных мюонных камер, использующих четыре различные технологи, позволяющие, идентифицировать мюоны и измерить их импульсы. Мюоны обычно проходят через внутренний детектор и калориметр, а потому требуется наличие мюонного спектрометра.

  • Магнитная система ATLAS изгибает частицы вокруг различных слоев детекторных систем, что упрощает отслеживание треков частиц.

В эксперименте ATLAS (февраль 2012 г.) работают более 3 000 ученых из 174 институтов из 38 стран.

CMS (Compact Muon Solenoid)

— является детектором общего назначения на Большом адронном коллайдере (LHC). Как и ATLAS, имеет широкую физическую программу, начиная от изучения стандартной модели (включая бозон Хиггса) до поиска частиц, которые могут составлять темную материю. Хотя он имеет те же научные цели, что и эксперимент ATLAS, CMS использует иные технические решения и другую конструкцию магнитной системы.

Детектор CMS построен вокруг огромного магнита соленоида. Представляет собой цилиндрическую катушку сверхпроводящего кабеля, которая генерирует поле в 4 тесла, примерно в 100 000 раз превышающее магнитное поле Земли. Поле ограничено стальным «хамутом», который является массивнейшим компонентом детектора, масса которого — 14 000 тонн. Полный детектор имеет длину — 21 м, ширину — 15 м и высоту — 15 м. Установка состоит из 4 основных компонентов:

  • Магнит соленоида - крупнейший магнит в мире, который служит для изгиба траектории заряженных частиц, вылетающих из точки столкновения. Искажение траектории позволяет различить положительно и отрицательно заряженные частицы (т.к. они изгибаются в противоположных направлениях), а также измерить импульс, величина которого зависит от кривизны траектории. Огромные размеры соленоида позволяют расположить трекер и калориметры внутри катушки.
  • Кремниевый трекер — состоит из 75 миллионов отдельных электронных датчиков, расположенных в концентрических слоях. Когда заряженная частица пролетает через слои трекера, она передает часть энергии каждому слою, объединение этих точек столкновения частицы с различными слоями позволяет в дальнейшем определить ее траекторию.
  • Калориметры - электронный и адронный см. калориметры ATLAS.
  • Саб-детекторы - позволяют детектировать мюоны. Представлены 1 400 мюонными камерами, которые слоями располагаются вне катушки, чередуясь с металлическими пластинами «хамута».

Эксперимент CMS является одним из крупнейших международных научных исследований в истории, в котором принимают участие 4300 человек: физики в области элементарных частиц, инженеры и техники, студенты и вспомогательный персонал из 182 институтов, 42 стран (февраль 2014 года).

ALICE (A Large Ion Collider Experiment)

— представляет собой детектор тяжелых ионов на кольцах большого адронного коллайдера (LHC). Он предназначен для изучения физики сильно взаимодействующего вещества при экстремальных плотностях энергии, где образуется фаза вещества, называемая кварк-глюонной плазмой.

Вся обычная материя в сегодняшней вселенной состоит из атомов. Каждый атом содержит ядро, состоящее из протонов и нейтронов (кроме водорода, не имеющего нейтронов), окруженного облаком электронов. Протоны и нейтроны, в свою очередь, состоят из кварков, связанных вместе с другими частицами, называемыми глюонами. Никакой кварк никогда не наблюдался изолированно: кварки, а также глюоны, по-видимому, постоянно связаны вместе и ограничены внутри составных частиц, таких как протоны и нейтроны. Это называется конфайнментом.

Столкновения в LHC создают температуры более чем в 100 000 раз более горячее, чем в центре Солнца. Колллайдер обеспечивает столкновения между свинцовыми ионами, воссоздавая условия, аналогичные тем, которые имели место сразу после Большого Взрыва. В этих экстремальных условиях протоны и нейтроны «расплавляются», освобождая кварки от их связей с глюонами. Это и есть кварк-глюонная плазма.

В эксперименте ALICE используется детектор ALICE массой 10 000 тонн, 26 м в длину, 16 м в высоту и 16 м в ширину. Устройство состоит из трех основных комплектов компонентов: трэкинговых устройств, калориметров и детекторов-идентификаторов частиц. Также его разделяют на 18 модулей. Детектор находится в тоннеле на глубине 56 м под, недалеко от деревни Сент-Денис-Пуйи во Франции.

Эксперимент насчитывает более 1 000 ученых из более чем 100 институтов физики в 30 странах.

LHCb (Large Hadron Collider beauty experiment)

В рамках эксперимента проводится исследование небольших различий между веществом и антиматерией, изучая тип частицы, называемый «бьюти-кварк» или «b-кварк».

Вместо того, чтобы окружать всю точку столкновения с помощью закрытого детектора, как ATLAS и CMS, эксперимент LHCb использует серию сабдетекторов для обнаружения преимущественно передних частиц — тех, которые были направлены вперед в результате столкновения в одном направлении. Первый сабдетектор установлен близко к точке столкновения, а остальные — один за другим на расстоянии 20 метров.

На LHC создается большое изобилие различных типов кварков, прежде чем они быстро распадаются на другие формы. Чтобы поймать b-кварки, для LHCb были разработаны сложные движущиеся следящие детекторы, расположенные вблизи движения пучка частиц по коллайдеру.

5600-тонный детектор LHCb состоит из прямого спектрометра и плоских детекторов. Это 21 метр в длину, 10 метров в высоту и 13 метров в ширину, он находится на глубине 100 метров под землей. Около 700 ученых из 66 различных институтов и университетов вовлечены в эксперимент LHCb (октябрь 2013 г.).

Другие эксперименты на коллайдере

Помимо вышеперечисленных экспериментов на Большом адронном коллайдере есть другие два эксперимента с установками:

  • LHCf (Large Hadron Collider forward) — изучает частицы, выброшенные вперед после столкновения пучков частиц. Они имитируют космические лучи, исследованием которых и занимаются ученые в рамках эксперимента. Космические лучи — это естественные заряженные частицы из космического пространства, которые постоянно бомбардируют земную атмосферу. Они сталкиваются с ядрами в верхней атмосфере, вызывая каскад частиц, которые достигают уровня земли. Изучение того, как столкновения внутри LHC вызывают подобные каскады частиц, поможет физикам интерпретировать и откалибровать крупномасштабные эксперименты с космическими лучами, которые могут охватывать тысячи километров.

LHCf состоит из двух детекторов, которые расположены вдоль LHC, на расстоянии 140 метров с обеих сторон он точки столкновения ATLAS. Каждый из двух детекторов весит всего 40 килограммов и имеет размеры 30 см в длину, 80 см в высоту и 10 см в ширину. В эксперименте LHCf участвуют 30 ученых из 9 институтов в 5 странах (ноябрь 2012 г.).

  • TOTEM (Total Cross Section, Elastic Scattering and Diffraction Dissociation) - эксперимент с самой длинной установкой на коллайдере. Его задачей является исследование самих протонов, путем точного измерения протонов, возникающих при столкновениях под малыми углами. Эта область известна как «прямое» направление и недоступна другим экспериментам LHC. Детекторы TOTEM распространяются почти на полкилометра вокруг точки взаимодействия CMS. TOTEM имеет почти 3 000 кг оборудования, в том числе четыре ядерных телескопа, а также 26 детекторов типа «римский горшок». Последний тип позволяет расположить детекторы максимально близко к пучку частиц. Эксперимент TOTEM включает около 100 ученых из 16 институтов в 8 странах (август 2014 года).

Зачем нужен Большой адронный коллайдер?

Крупнейшая международная научная установка исследует широкий спектр физических задач:

  • Изучение топ-кварков. Данная частица является не только самым тяжелым кварком, но и самой тяжелой элементарной частицей. Исследование свойств топ-кварка также имеет смысл, потому что он является инструментом для исследования .
  • Поиск и изучение бозона Хиггса. Хотя ЦЕРН утверждает, что бозон Хиггса был уже обнаружен (в 2012-м году), пока о его природе известно совсем немного и дальнейшие исследования могли бы внести большую ясность в механизм его работы.

  • Изучение кварк-глюонной плазмы. При столкновениях ядер свинца на больших скоростях - в коллайдере образуется . Ее исследование может принести результаты, полезные как для ядерной физики (улучшение теории сильных взаимодействий), так и для астрофизики (изучение Вселенной в ее первые моменты существования).
  • Поиск суперсимметрии. Это исследование направлено на опровержение или доказательство «суперсимметрии» — теории, согласно которой любая элементарная частица имеет более тяжелого партнера, называемого «суперчастицей».
  • Исследование фотон-фотонных и фотон-адронных столкновений. Позволит улучшить понимание механизмов процессов подобных столкновений.
  • Проверка экзотических теорий. К этой категории задач относятся самые нетрадиционные - «экзотические», например, поиск параллельных вселенных посредством создания мини-черных дыр.

Кроме этих задач, существует еще множество других, решение которых также позволит человечеству понимать природу и окружающий нас мир на более качественном уровне, что в свою очередь откроет возможности для создания новых технологий.

Практическая польза Большого адронного коллайдера и фундаментальной науки

Прежде всего, следует отметить, что фундаментальные исследования привносят вклад в фундаментальную науку. Применением же этих знаний занимается прикладная наука. Сегмент общества, не осведомленный в пользе фундаментальной науки зачастую не воспринимает открытие бозона Хиггса или создание кварк-глюонной плазмы, как нечто значимое. Связь подобных исследований с жизнью рядового человека - неочевидно. Рассмотрим краткий пример с атомной энергетикой:

В 1896-м году французский физик Антуан Анри Беккерель открыл явление радиоактивности. Долгое время считалось, что к ее промышленному использованию человечество перейдет нескоро. Всего за пять лет до запуска первого в истории ядерного реактора великий физик Эрнест Резерфорд, собственно открывший атомное ядро в 1911-м году, говорил, что атомная энергия никогда не найдет своего применения. Переосмыслить свое отношение к энергии, заключенной в ядре атома, специалистам удалось в 1939 году, когда немецкие ученые Лиза Мейтнер и Отто Ган обнаружили, что ядра урана при облучении их нейтронами делятся на две части с выделением огромного количества энергии — ядерной энергии.

И лишь после этого последнего звенья ряда фундаментальных исследований в игру вступила прикладная наука, которая на основе этих открытий изобрела устройство для получения ядерной энергии - атомный реактор. Масштаб открытия можно оценить, ознакомившись с долей выработки электроэнергии атомными реакторами. Так в Украине, например, на АЭС выпадает 56% выработки электроэнергии, а во Франции и вовсе - 76%.

Все новые технологии основываются на тех или иных фундаментальных знаниях. Приведем еще пару кратких примеров:

  • В 1895-м году Вильгельм Конрад Рентген заметил, что под действием рентгеновского излучения фотопластинка затемняется. Сегодня рентгенография - одно из наиболее применяемых исследований в медицине, позволяющая изучить состояние внутренних органов и обнаружить инфекции и опухали.
  • В 1915-м году Альберт Эйнштейн предложил свою . Сегодня эта теория учитывается при работе GPS спутников, которые определяют местоположение объекта с точностью до пары метров. GPS применяется в сотовой связи, картографии, мониторинге транспорта, но в первую очередь - в навигации. Погрешность спутника, не учитывающего ОТО, с момента запуска росла бы на 10 километров в день! И если пешеход может воспользоваться разумом и бумажной картой, то пилоты авиалайнера попадут в затруднительную ситуацию, так как ориентироваться по облакам - невозможно.

Если сегодня практическое применение открытиям, произошедшим на LHC еще не найдено - это не значит, что ученые «возятся на коллайдере зря». Как известно, человек разумный всегда намеревается получить максимум практического применения из имеющихся знаний, а потому знания о природе, накопленные в процессе исследования на БАК, определенно найдут свое применение, рано или поздно. Как уже было продемонстрировано выше - связь фундаментальных открытий и использующих их технологий иногда может быть совсем не очевидна.

Напоследок, отметим так называемые косвенные открытия, которые не ставятся как изначальные цели исследования. Они встречаются довольно часто, так как для совершения фундаментального открытия, обычно, требуется внедрение и использование новых технологий. Так развитие оптики получило толчок от фундаментальных исследований космоса, строящихся на наблюдениях астрономов через телескоп. В случае с ЦЕРН - так возникла повсеместно применяемая технология - Интернет, проект, предложенный Тимом Бернерсом-Ли в 1989-м году для облегчения поиска данных организации ЦЕРН.

(БАК) - на днях вернулся к работе. После модернизации ускоритель частиц заработал с удвоенной мощностью. Значит ли это, что все страхи, связанные с его первоначальным запуском, возродились в удвоенном количестве?

Хотя этого события ждали по всему миру, есть два человека, которые хранили молчание: Уолтер Вагнер, офицер ядерной безопасности на пенсии, и испанский журналист Луис Санчо. У них есть своя история, связанная с БАК, и, возможно, именно им мы обязаны за все страшилки, связанные с запуском расщепляющей протоны машины.

Еще за несколько месяцев до того, как коллайдер должны были включить впервые в 2008 году, Вагнер и Санчо подали иск против организаций, стоящих за монструозной машиной: Министерство энергетики США, Национальная ускорительная лаборатория Ферми и Национальный научный фонд.

Будет лишним сказать, что потребовалось много мужества и, возможно, немного безумия, чтобы попытаться засудить любую из этих организаций, на которые работают ярчайшие интеллектуалы человечества, не говоря уж о том, чтобы напасть сразу на всех. Особенно после того, как они закончили строительство 30-летнего проекта стоимостью в 6 миллиардов долларов. В защиту мужчин, Вагнер и Санчо пытались спасти мир от неминуемого, как им казалось, уничтожения.

Среди опасений было и то, что БАК может породить миниатюрную черную дыру, которая буквально поглотит Землю. В своем иске они утверждали:

«В конце концов, вся Земля упадет в растущую микрочерную дыру, которая превратит Землю в черную дыру средних размеров, вокруг которой будут продолжать вращаться луна, спутники, МКС и т. п».

Иск был отклонен, потому что мужчины не смогли доказать наличие «реальной угрозы». Впрочем, на Земле и по сей день остаются люди, которые уверены, что БАК приведет человечество к краху. Хотя Санчо и Вагнер ошиблись - Земля на месте, БАК работает несколько лет подряд - важно понять, почему научная подоплека работы БАК не подразумевает никаких угроз. Понять, почему не принесет такого уж катастрофического вреда.

Рождение черной дыры


Черные дыры - чрезвычайно плотные компактные объекты с массой от 4 до 170 миллионов раз превышающей солнечную. Хотя черные дыры по определению огромны, вполне возможно хотя бы в теории, что небольшое количество материи - десятки микрограммов - могут быть упакованы достаточно плотно, чтобы создать черную дыру. Это и будет примером микроскопической черной дыры.

До сих пор никто не наблюдал и не производил микроскопических черных дыр - даже БАК. Но прежде чем он был включен в первый раз в 2008 году, Вагнер и Санчо опасались, что разгон субатомных частиц до 99,99% скорости света и последующее их столкновение могут создать настолько плотное месиво частиц, что появится черная дыра.

Физики CERN сообщают, что общая теория относительности Эйнштейна предполагает, что на БАК невозможно произвести такое экзотическое явление. Но что, если Эйнштейн ошибался? Этого опасаются Вагнер и Санчо.

Даже если так, другая теория, разработанная известным астрофизиком Стивеном Хокингом, предсказывает, что даже если микроскопическая черная дыра образуется внутри БАК, она мгновенно распадется, не представляя никакой угрозы для существования Земли.

В 1974 году Хокинг предсказал, что черные дыры не просто пожирают материю, но и выплевывают ее в виде чрезвычайно высокоэнергетического излучения Хокинга. Согласно теории, чем меньше черная дыра, тем больше излучения Хокинга она выдает в космос, постепенно сходя на нет. Таким образом, микроскопическая черная дыра, став наименьшей, исчезнет, прежде чем сможет нанести ущерб и уничтожить нас. Возможно, по этой причине мы и не видели микроскопических черных дыр.

Рождение странной материи


Странная материя состоит из отдельных гипотетических частиц - , - которые отличаются от обычной материи, составляющей все, что есть вокруг нас.

Вагнер и Санчо опасаются, что эта странная материя может сливаться с обычной и «может превратить всю Землю в одну большую страпельку». Конечно, опасения Вагнера и Санчо не строятся на их теориях - эти мысли обсуждались в более серьезных научных кругах.

Тем не менее точное поведение странной материи или даже одной страпельки никто не знает; отчасти поэтому страпельки остаются кандидатами на частицы темной материи, которая .

Для поддержки этой теории физики из Брукхейвенской национальной лаборатории в Нью-Йорке пытаются создать страпельку в Релятивистском коллайдере тяжелых ионов с начала этого века. Пока ни одной страпельки не видели. Но шансы, конечно, всегда есть.

Если Брукхейвенской национальной лаборатории повезет в поисках, остаются опасения, что страпельки, контактируя с обычной материей, начинают цепную реакцию, которая превратит вас, нас и все остальное на Земле в комок странной материи. Сможем ли мы пережить такую трансформацию и что изменится - можно только догадываться. Но неизвестность пугает.

Физики CERN, однако, утверждают, что если Брукхейвену удастся создать страпельку, шансы на то, что она будет взаимодействовать с обычной материей, весьма невелики:

«При таких высоких температурах, которые производятся на коллайдерах, слепить странную материю вместе сложнее, чем образовать лед в горячей воде», - говорят они.

Рождение магнитных монополей


В природе магниты обладают двумя концами - северным и южным полюсом. Но в конце 19 века физик Пьер Кюри, муж Марии Кюри, предположил, что нет никаких причин того, почему частица с одним магнитным полюсом не может существовать.

Спустя более полувека такая частица под названием магнитный монополь никогда не создавалась в природе и не наблюдалась в природе. То есть она сугубо гипотетическая. Но это не помешало Вагнеру предположить, что мощная машина вроде БАК может создать первый в истории магнитный монополь, который может уничтожить Землю.

«У таких частиц может быть способность катализировать распад протонов и атомов, заставляя их превращаться в другие типы материи», - писали он и Санчо.

Теория того, что монополь может уничтожать протоны - субатомные строительные блоки всей материи во Вселенной - спекулятивная в лучшем случае, объясняют физики CERN. Но допустим, эта теория верна. В таком случае эта частица будет обладать массой, которая слишком велика, чтобы БАК мог создать такую частицу.

В общем, мы в безопасности.

«Факт существования Земли и других небесных тел исключает возможность создания опасных пожирающих протоны магнитных монополей с помощью БАК», - говорит физики CERN.

Следующие несколько месяцев физики проведут наращивая мощность БАК, чтобы она превысила в два раза предельную мощность, с которой БАК работал во время первого запуска. Это не отменяет тот факт, что Земля едва ли будет уничтожена микроскопическими черными дырами, страпельками или магнитными монополями.

Немного фактов о Большом адронном коллайдере, как и для чего он создан, какой с него прок и какие потенциальные опасности для человечества он таит.

1. Строительство БАК’а, или Большого адронного коллайдера, задумали еще в 1984 году, а начали только в 2001. Спустя 5 лет, в 2006 году, благодаря усилиям более чем 10-ти тысяч инженеров и ученых из разных государств, строительство Большого адронного коллайдера было завершено.

2. БАК — это самая большая экспериментальная установка в мире.

3. Так почему же Большой адронный коллайдер?
Большим его назвали благодаря его солидным размерам: длина основного кольца, по которому гоняют частицы, составляет порядка 27 км.
Адронным — так как установка ускоряет адроны (частицы, которые состоят из кварков).
Коллайдером — из-за ускоряющихся в противоположном направлении пучков частиц, которые сталкиваются друг с другом в специальных точках.

4. Для чего нужен Большой адронный коллайдер? БАК представляет из себя суперсовременный исследовательский центр, где ученые проводят опыты с атомами, сталкивая между собой на огромной скорости ионы и протоны. Ученые надеются с помощью исследований приоткрыть завесу над тайнами появления Вселенной.

5. Проект обошелся научному сообществу в астрономическую сумму — 6 млрд. долларов. Кстати, Россия делегировала на БАК 700 специалистов, которые работают и по сей день. Заказы для БАК принесли российским предприятиям порядка 120 млн долларов.

6. Без сомнений, главное открытие, сделанное в БАК — открытие в 2012 г. бозона Хиггса, или как его еще называют «частицы Бога». Бозон Хигса — это последнее звено в Стандартной модели. Еще одно значительное событие в Бак’е — достижение рекордного значения энергии столкновений в 2,36 тераэлектронвольта.

7. Некоторые ученые, в том числе и в России, считают, что благодаря масштабным экспериментам в ЦЕРН’е (Европейской организации по ядерным исследованиям, где, собственно, и расположен коллайдер), ученым удастся построить первую в мире машину времени. Однако большинство ученых не разделяют оптимизма коллег.

8. Главные опасения человечества по поводу самого мощного на планете ускорителя основаны на опасности, которая грозит человечеству, в результате образования микроскопических черных дыр, способных к захвату окружающей материи. Есть еще одна потенциальная и крайне опасная угроза — возникновения страпелек (произв. от Странная капелька), которые, гипотетически, способны при столкновении с ядром какого-либо атома, образовывать все новые страпельки, преобразуя материю всей Вселенной. Однако большинство самых авторитетных ученых заявляют, что такой исход маловероятен. Но теоретически возможен

9. В 2008 году на ЦЕРН подали в суд двое жителей штата Гавайи. Они обвинили ЦЕРН в попытке положить конец человечеству из-за халатности, требуя от ученых гарантий на безопасность.

10. Большой адронный коллайдер расположен в Швейцарии недалеко от Женевы. В ЦЕРНе функционирует музей, где посетителям наглядно объясняют о принципах работы коллайдера и для чего он был построен.

11 . Ну и напоследок немного забавный факт. Судя по запросам в Яндексе, многие люди, которые ищут информацию о Большом адронном коллайдере, не знают как правильно пишется название ускорителя. Например, пишут «аНдронный» (и не только пишут, чего стоят репортажи НТВ с их аНдронным коллайдером), порой пишут «андроидный» (Империя наносит ответный удар). В буржуйском нете тоже не отстают и вместо «hadron» вбивают в поисковик «hardon» (на православном английском hard-on — стояк). Интересен вариант написания на белорусском — «Вялікі гадронны паскаральнік», что переводится как «Большой гадронный ускоритель».

Адронный коллайдер. Фото

Сокращённо БАК (англ. Large Hadron Collider, сокращённо LHC) - ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в ЦЕРНе (Европейский совет ядерных исследований), находящемся около Женевы, на границе Швейцарии и Франции. БАК является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 тыс. учёных и инженеров из более чем 100 стран.

Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м; адронным - из-за того, что он ускоряет адроны, то есть тяжёлые частицы, состоящие из кварков; коллайдером (англ. collider - сталкиватель) - из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.

Технические характеристики BAK

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5 ГэВ (5·109 электронвольт) на каждую пару сталкивающихся нуклонов. На начало 2010 года БАК уже несколько превзошел по энергии протонов предыдущего рекордсмена - протон-антипротонный коллайдер Тэватрон, который до конца 2011 года работал в Национальной ускорительной лаборатории им. Энрико Ферми (США). Несмотря на то, что наладка оборудования растягивается на годы и ещё не завершена, БАК уже стал самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии остальные коллайдеры, в том числе и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Светимость БАК во время первых недель работы пробега была не более 1029 частиц/см 2 ·с, тем не менее она продолжает постоянно повышаться. Целью является достижение номинальной светимости в 1,7·1034 частиц/см 2 ·с, что по порядку величины соответствует светимостям BaBar (SLAC, США) и Belle (англ.) (KEK, Япония).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер . Туннель с длиной окружности 26,7 км проложен под землёй на территории Франции и Швейцарии. Глубина залегания туннеля - от 50 до 175 метров, причём кольцо туннеля наклонено примерно на 1,4 % относительно поверхности земли. Для удержания, коррекции и фокусировки протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Магниты работают при температуре 1,9 K (-271 °C), что немного ниже температуры перехода гелия в сверхтекучее состояние.

Детекторы БАК

На БАК работают 4 основных и 3 вспомогательных детектора:

  • ALICE (A Large Ion Collider Experiment)
  • ATLAS (A Toroidal LHC ApparatuS)
  • CMS (Compact Muon Solenoid)
  • LHCb (The Large Hadron Collider beauty experiment)
  • TOTEM (TOTal Elastic and diffractive cross section Measurement)
  • LHCf (The Large Hadron Collider forward)
  • MoEDAL (Monopole and Exotics Detector At the LHC).

ATLAS, CMS, ALICE, LHCb - большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf - вспомогательные, находятся на удалении в несколько десятков метров от точек пересечения пучков, занимаемых детекторами CMS и ATLAS соответственно, и будут использоваться попутно с основными.

Детекторы ATLAS и CMS - детекторы общего назначения, предназначены для поиска бозона Хиггса и «нестандартной физики», в частности тёмной материи, ALICE - для изучения кварк-глюонной плазмы в столкновениях тяжёлых ионов свинца, LHCb - для исследования физики b-кварков, что позволит лучше понять различия между материей и антиматерией, TOTEM - предназначен для изучения рассеяния частиц на малые углы, таких что происходит при близких пролётах без столкновений (так называемые несталкивающиеся частицы, forward particles), что позволяет точнее измерить размер протонов, а также контролировать светимость коллайдера, и, наконец, LHCf - для исследования космических лучей, моделируемых с помощью тех же несталкивающихся частиц.

С работой БАК связан также седьмой, совсем незначительный в плане бюджета и сложности, детектор (эксперимент) MoEDAL, предназначенный для поиска медленно движущихся тяжёлых частиц.

Во время работы коллайдера столкновения проводятся одновременно во всех четырёх точках пересечения пучков, независимо от типа ускоряемых частиц (протоны или ядра). При этом все детекторы одновременно набирают статистику.

Ускорение частиц в коллайдере

Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших энергий достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. При этой энергии они уже движутся со скоростью близкой к световой. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем сгусток протонов направляют в главное 26,7-километровое кольцо, доводя энергию протонов до максимальных 7 ТэВ, и в точках столкновения детекторы фиксируют происходящие события. Два встречных пучка протонов при полном заполнении могут содержать 2808 сгустков каждый. На начальных этапах отладки процесса ускорения циркулируют лишь по одному сгустку в пучке длиной несколько сантиметров и небольшого поперечного размера. Затем начинают увеличивать количество сгустков. Сгустки располагаются в фиксированных позициях относительно друг друга, которые синхронно движутся вдоль кольца. Сгустки в определённой последовательности могут сталкиваться в четырёх точках кольца, где расположены детекторы частиц.

Кинетическая энергия всех сгустков адронов в БАКе при полном его заполнении сравнима с кинетической энергией реактивного самолета, хотя масса всех частиц не превышает нанограмма и их даже нельзя увидеть невооружённым глазом. Такая энергия достигается за счёт скорости частиц, близкой к скорости света.

Сгустки проходят полный круг ускорителя быстрее, чем за 0,0001 сек, совершая, таким образом, свыше 10 тыс. оборотов в секунду

Цели и задачи БАК

Главная задача Большого адронного коллайдера - выяснить устройство нашего мира на расстояниях меньше 10 –19 м, "прощупав" его частицами с энергией несколько ТэВ. К настоящему времени уже накопилось много косвенных свидетельств того, что на этом масштабе физикам должен открыться некий «новый пласт реальности», изучение которого даст ответы на многие вопросы фундаментальной физики. Каким именно окажется этот пласт реальности - заранее не известно. Теоретики, конечно, предложили уже сотни разнообразных явлений, которые могли бы наблюдаться на энергиях столкновений в несколько ТэВ, но именно эксперимент покажет, что на самом деле реализуется в природе.

Поиск Новой физики Стандартную модель не может считаться окончательной теорией элементарных частиц. Она должна быть частью некоторой более глубокой теории строения микромира, той частью, которая видна в экспериментах на коллайдерах при энергиях ниже примерно 1 ТэВ. Такие теории коллективно называют «Новая физика» или «За пределами Стандартной модели». Главная задача Большого адронного коллайдера - получить хотя бы первые намеки на то, что это за более глубокая теория. Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн, получившая своё развитие в М-теории (теории бран), теория супергравитации, петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц. БАК позволит провести эксперименты, которые ранее были невозможны и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» - например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий. Изучение топ-кварков Топ-кварк - самый тяжёлый кварк и, более того, это самая тяжёлая из открытых пока элементарных частиц. Согласно последним результатам Тэватрона, его масса составляет 173,1 ± 1,3 ГэВ/c 2 . Из-за своей большой массы топ-кварк до сих пор наблюдался пока лишь на одном ускорителе - Тэватроне, на других ускорителях просто не хватало энергии для его рождения. Кроме того, топ-кварки интересуют физиков не только сами по себе, но и как «рабочий инструмент» для изучения бозона Хиггса. Один из наиболее важных каналов рождения бозона Хиггса в БАК - ассоциативное рождение вместе с топ-кварк-антикварковой парой. Для того, чтобы надёжно отделять такие события от фона, предварительно необходимо изучение свойств самих топ-кварков. Изучение механизма электрослабой симметрии Одной из основных целей проекта является экспериментальное доказательство существования бозона Хиггса - частицы, предсказанной шотландским физиком Питером Хиггсом в 1964 году в рамках Стандартной модели. Бозон Хиггса является квантом так называемого поля Хиггса, при прохождении через которое частицы испытывают сопротивление, представляемое нами как поправки к массе. Сам бозон нестабилен и имеет большую массу (более 120 ГэВ/c 2). На самом деле, физиков интересует не столько сам бозон Хиггса, сколько хиггсовский механизм нарушения симметрии электрослабого взаимодействия. Изучение кварк-глюонной плазмы Ожидается, что примерно один месяц в год будет проходить в ускорителе в режиме ядерных столкновений. В течение этого месяца коллайдер будет разгонять и сталкивать в детекторах не протоны, а ядра свинца. При неупругом столкновении двух ядер на ультрарелятивистских скоростях на короткое время образуется и затем распадается плотный и очень горячий комок ядерного вещества. Понимание происходящих при этом явлений (переход вещества в состояние кварк-глюонной плазмы и её остывание) нужно для построения более совершенной теории сильных взаимодействий, которая окажется полезной как для ядерной физики, так и для астрофизики. Поиск суперсимметрии Первым значительным научным достижением экспериментов на БАК может стать доказательство или опровержение «суперсимметрии» - теории, гласящей, что любая элементарная частица имеет гораздо более тяжёлого партнера, или «суперчастицу». Изучение фотон-адронных и фотон-фотонных столкновений Электромагнитное взаимодействие частиц описывается как обмен (в ряде случаев виртуальными) фотонами. Другими словами, фотоны являются переносчиками электромагнитного поля. Протоны электрически заряжены и окружены электростатическим полем, соответственно это поле можно рассматривать как облако виртуальных фотонов. Всякий протон, особенно релятивистский протон, включает в себя облако виртуальных частиц как составную часть. При столкновении протонов между собой взаимодействуют и виртуальные частицы, окружающие каждый из протонов. Математически процесс взаимодействия частиц описывается длинным рядом поправок, каждая из которых описывает взаимодействие посредством виртуальных частиц определённого типа (см.: диаграммы Фейнмана). Таким образом, при исследовании столкновения протонов косвенно изучается и взаимодействие вещества с фотонами высоких энергий, представляющее большой интерес для теоретической физики. Также рассматривается особый класс реакций - непосредственное взаимодействие двух фотонов, которые могут столкнуться как со встречным протоном, порождая типичные фотон-адронные столкновения, так и друг с другом. В режиме ядерных столкновений, из-за большого электрического заряда ядра, влияние электромагнитных процессов имеет ещё большее значение. Проверка экзотических теорий Теоретики в конце XX века выдвинули огромное число необычных идей относительно устройства мира, которые все вместе называются «экзотическими моделями». Сюда относятся теории с сильной гравитацией на масштабе энергий порядка 1 ТэВ, модели с большим количеством пространственных измерений, преонные модели, в которых кварки и лептоны сами состоят из частиц, модели с новыми типами взаимодействия. Дело в том, что накопленных экспериментальных данных оказывается всё ещё недостаточно для создания одной-единственной теории. А сами все эти теории совместимы с имеющимися экспериментальными данными. Поскольку в этих теориях можно сделать конкретные предсказания для БАК, экспериментаторы планируют проверять предсказания и искать следы тех или иных теорий в своих данных. Ожидается, что результаты, полученные на ускорителе, смогут ограничить фантазию теоретиков, закрыв некоторые из предложенных построений. Другое Также ожидается обнаружение физических явлений вне рамок Стандартной Модели. Планируется исследование свойств W и Z-бозонов, ядерных взаимодействий при сверхвысоких энергиях, процессов рождения и распадов тяжёлых кварков (b и t).

Последние материалы раздела:

Как включить интернет на компьютере, используя мобильный телефон
Как включить интернет на компьютере, используя мобильный телефон

Инструкции по использованию интернета от телефона на Android на компьютере по USB приведены в порядке возрастания сложности применения. Так что...

Смартфон Samsung Galaxy J5 Prime: характеристики, обзор, отзывы Технические характеристики самсунг j5 prime
Смартфон Samsung Galaxy J5 Prime: характеристики, обзор, отзывы Технические характеристики самсунг j5 prime

Информация о марке, модели и альтернативных названиях конкретного устройства, если таковые имеются. ДизайнИнформация о размерах и весе устройства,...

Почему не включается блок питания
Почему не включается блок питания

Прислал юрий11112222 - Схемотехника блоков питания: ATX-350WP4 Схемотехника блоков питания: ATX-350WP4 В статье предлагается информация о...