Что такое. Разрешение матрицы камеры видеонаблюдения 2 mpix разрешение

какое разрешение в пикселах имеет 1 мегапиксель и 2 мегапикселя и получил лучший ответ

Ответ от Мудрый Гудвин[гуру]
в массовом порядке на матрицах миллионы ячеек, то и для краткости вместо миллиона пикселей используют термин "мегапиксель".
640 x 480 = 300 000 px = 0.3 Мp (ныне используются в телефонных камерах) 1600 x 1200 = 1 920 000 px ~ 2 Mp.
Пиксель - это точка изображения. Любое изображение представляет собой прямоугольник с определенным числом пикселей по вертикали и горизонтали. Ниже расположенное изображение имеет разрешение 240х230 пикселей, иначе говоря, 240 точек по горизонтали и 320 по вертикали. Чтобы посчитать из скольких пикселей состоит изображение, необходимо умножить их количество по ширине и высоте. В данном случае получается 240х320=76800. То есть, картинка имеет разрешение 0,0768 мегапикселя.

Ответ от Дмитрий Н. [гуру]
1000000 и 2000000


Ответ от Веселый Роджер [гуру]
Мега это что?
Если не знаешь, то миллион!
Ну а дальше сам?


Ответ от Марк Облов [гуру]
мега- читай, миллион. 1 миллион пикселей, два миллиона.


Ответ от Lathean [гуру]
Некорректный вопрос. Вас что интересует: размер возможной матрицы или банальный порядок счёта? Если размер, то он может быть разным. Например, для 1 Мпикс это будет 1024 х 1024 пикс. Для 2 Мпикс, соответственно, в два раза больше. Если речь о степенях, то в Мегапикселе 1048576 пикс. Правда, при производстве это количество всегда немного меньше в силу особенностей технологии.


Ответ от 2 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: какое разрешение в пикселах имеет 1 мегапиксель и 2 мегапикселя

Дополнительным подтверждением того, что видеонаблюдение шагнуло далеко вперед, являются профессиональные Full HD-камеры MBK-Light-IP на 2 МП. Они продуцируют более четкое по сравнению с 1,3 МП моделями изображение, фиксируя даже малейшие детали. Специалисты компании «БайтЭрг» помогут подобрать идеальную модификацию для конкретных условий.

Преимущества линейки

  • Матрица 1/2,8"" CMOS Sony Exmor гарантирует хорошую светопропускную способность оптики, что приводит к четкому изображению с минимальной зернистостью и шумом.
  • Поддержка стандарта ONVIF 2.4 обеспечивает совместимость с различными типами ПО.
  • Максимальный поток 8 Мбит/с позволяет без проблем передавать изображение предельно высокого качества.
Бесплатная комплектация каждой Full-HD камеры 1080р программным обеспечением SFClient на 36 каналов – дополнительный бонус от нашей компании.

Особенности некоторых видеокамер

В купольных моделях, предназначенных для работы внутри помещения, ИК-подсветка отсутствует. В остальных же она есть и может охватывать расстояние от 20 до 40 м. Это и определяет конечную стоимость техники серии MBK-Light-IP.

Еще одно отличие – объектив: большинство устройств оснащено вариофокальным, а некоторые имеют фиксированное фокусное расстояние. При этом последнее составляет 3,6 мм, например как у МВК-LIP 1080 Street , и является самым востребованным на сегодняшний день.

IP-камеры на 2 МП – это профессиональное решение для организации системы видеонаблюдения.

2-мегапиксельная сетевая видеокамера с поддержкой Full-HD-разрешения. Предназначена для использования вне помещения, в любую погоду и при любом освещении. Видеокамера оборудована матрицей 1/2,9” CMOS Sony Exmor (IMX323). Качество изображения: 1920х1080 при 30 к/с. Максимальный поток - 8 Мбит/с.

9 478 рублей

Уличная антивандальная купольная видеокамера с ИК-подсветкой. Поддерживает Full-HD-разрешение - 2 Мегапикселя. МВК-LVIP 1080 Strong (2,8-12) представляет собой цельнометаллический купол - её сложно разбить, повредить или несанкционированно отвернуть объектив от объекта наблюдения.

8 245 рублей

Внутренняя купольная IP-видеокамера с ИК-подсветкой. Поддерживает Full-HD-разрешение - 2 Мегапикселя. Изделие оснащено матрицей 1/2,9” CMOS Sony Exmor (IMX323). Разрешение: 1920х1080 при 30 к/с. Максимальный поток - 8 Мбит/с.

5 836 рублей

2-мегапиксельная внутренняя купольная видеокамера с вариофокальным объективом. Видеокамера оборудована сенсором 1/2,9” CMOS Sony Exmor (IMX323). Качество картинки: 1920х1080 при 25 к/с. Максимальный поток - 8 Мбит/с. В изделии применен кодек H.264 – обеспечивает оптимальное сжатие

Мегапиксели - правда о них.

Мегапиксели - правда о них:

Сегодня фотолюбители часто произносят фразу “у меня мегапикселей больше”. Мегапиксели стали своего рода мерилом крутости. Но более продвинутые пользователи знают, что количество мегапикселей далеко не самый объективный параметр, по которому можно сравнивать фотокамеры. Разберёмся, в чём же дело и что такое “мегапиксели”.

Детектор цифрового фотоаппарата, матрица, состоит из фоточувствительных ячеек - пикселей (pixels, сокращённо px). Количество пикселей по ширине и высоте матрицы определяют размеры получаемого изображения, а их произведение - площадь. Мега - миллион, а т.к. технологии уже как 6 лет позволяют размещать в массовом порядке на матрицах миллионы ячеек, то и для краткости вместо миллиона пикселей используют термин “мегапиксель”. Итак, именно площадь матрицы измеряется в мегапикселях .

В этом не сложно убедиться:

640 x 480 = 300 000 px = 0.3 Мp (ныне используются в телефонных камерах)
1600 x 1200 = 1 920 000 px ~ 2 Mp
2272 x 1704 = 3 871 000 px ~ 4 Mp
3008 x 2008 = 6 040 000 px ~ 6 Mp
... и так далее

Из этого следует ряд важных выводов. Во-первых, раз мегапикселями меряют площадь, то и величина эта квадратичная (как произведение ширины на высоту). А значит добавление каждого дополнительного мегапикселя в матрицу вносит всё меньший выигрыш в увеличение сторон изображения. Это видно на следующем примере: относительная разница между 0.3 и 1.3 Мp такая же, что и между 1.3 и 4 Mp или же между 4 и 16 Mp. Т.е. если мы хотим увеличить геометрические размеры картинки в два раза, то площадь мы должны увеличить уже в 4 раза. На непонимании этого факта маркетологи сегодня прекрасно продают незнающим пользователям камеры по 8, 10 Мпикс. Нетрудно предположить, что в будущем и 11, и 12 Mp цифровые мыльницы будут преподноситься как некий прорыв для любителей. Хотя из вышесказанного очевидно, что разница между 4 и 5 Mp существенней, чем между 10 и 12 Mp.

Рис.1 Зависимость между площадью кадра и его
большей стороной

На Рис.1 показана графическая зависимость между площадью кадра и его большей стороной (для соотношения сторон кадра 3/4). Видно, что для того, чтобы получить по большей стороне 2500 px нам нужна матрица ~5 Мp, а чтобы получить 5000 px - уже 19 Mp. Если время 5 Mp камер уже уходит, то эра 19 Mp малоформатных камер и мыльниц ещё и не начиналось.

Теперь вопрос: 0.3 Mp (обычное разрешение камеры телефона) - это много или мало? Наверняка вы вспомните свой телефон и его ужасные замыленные фотографии. А теперь взгляните на Рис.2:

Рис.2 Сверху вниз:
6 в 0.3 - зеркальная камера
4 в 0.3 - цифровая мыльница
2 в 0.3 - цифровая мыльница
0.3 в 0.3 - мобильный телефон

Здесь показаны фотографии с четырёх разных камер: 6 Mp (зеркальная), 4 и 2 Mp (разные цифромыльницы) и 0.3 Mp (телефон). Фотографии делались приблизительно в одно время. Затем уменьшались до разрешения телефона, т.е. 0.3 Mp. Хорошо видно, что на более дорогих камерах картинка весьма детализирована даже в таком казалось бы маленьком разрешении. В чём причина? Кто-то скажет, что тест не объективен, ибо изображение получалось на матрицу с заведомо большим разрешением. Но это не так. В идеале получаемое изображение должно быть разрешено пиксель в пиксель. Т.е. если какая-то деталь сюжета имеет угловой размер в 1 пиксель, то она должна отобразиться. В реальности этого не происходит из-за погрешностей, вносимых на разных этапах получения изображения. Проследим, как получается изображение в камере:

1. Сначала свет проходит через объектив. Здесь на детализацию оказывает влияние качество оптики. В общем, под качеством оптики понимается целая совокупность параметров: просветление, диаметр и материал линз, их количество, плюс влияние размера относительного отверстия (диафрагмы). Очевидно, что стеклянный объектив зеркальной каперы и пластиковый “глазок” мобильного телефона имеют колоссальную разницу. Самыми распространёнными проблемами, возникающими на этом этапе являются мыло (непосредственный враг разрешающей способности) и хроматические аберрации (появление розовых и голубых ореолов). Влияние мыла прекрасно видно, на Рис.2 (нижнее телефонное фото).

Рис.3 Пример хроматических аберраций на ветках дерева (справа эффект проявляется сильнее)

Рис.4 Эффект муара при наложении двух решёток.

3. Теперь непосредственно матрица. Тепловой и электронный шум матрицы вносят дополнительную погрешность в изображение. Матрица - это ПЗС (прибор с зарядовой связью) - полупроводниковый прибор, а полупроводники как известно очень чувствительны к температуре. Шум сильнее проявляется при длительных выдержках и является самым непосредственным врагом разрешения. Сильный шум способен полностью уничтожить мелкие детали изображения. Алгоритмы дешёвых камер устроены так, что в плохо освещённых условиях фотоаппарат повышает чувствительность матрицы. Это значит, что АЦП (аналогово-цифровой преобразователь) обрабатывает предварительно усиленную информацию с матрицы. Поскольку усиливается не только полезная информация, но и шумы матрицы, то их влияние оказывается сильнее и уничтожается всё больше деталей. Особенно это заметно в телефонах, которые предназначены обычно для съёмки в слабо освещённых помещениях и чувствительность матрицы у них очень высока.

Рис.5 Пример зашумлённого изображения

Также надо сказать, что собственный шум матрицы сильно зависит от количества пикселей на самой подложке. Матрица - понятие не абстрактное, а физическое и соответственно имеет свои геометрические размеры. Несложно догадаться, что в цифровых мыльницах и зеркальных камерах стоят матрицы разных размеров. Как вы думаете, в какой матрице будет меньше шумов: в маленькой цифромыльничной 10 Мp или большой “зеркальной” 10 Mp? Чем больше физический размер пикселя - тем меньше собственный шум. Матрица - весьма дорогой элемент, а т.к. с увеличением матрицы необходимо увеличивать и объективы, то в мире цифрового фото по размерам матриц можно провести некоторую классификацию камер:

Физический размер матрицы Допустимое кол-во Мп на матрицу Применение Цена
4х3 мм 0.3-1.3 Мп Мобильные телефоны <400$
5х4 - 7х5 мм 2-10Мп Цифровые мыльницы, дорогие телефоны <400$
9х7 мм <10Мп Просьюмерки (продвинутые цифровые мыльницы) 500-600$
24х16 мм <12 Мп Зеркальные камеры 1000-3000$
36x24 мм 8-16Мп Полнокадровые 35мм зеркальные камеры 4000-8000$
60х60 мм 16-40Мп Среднеформатные слайдовые камеры 20000-30000$
(только за цифровой задник, т.е. по сути матрицу!)
~150x150 мм >80Мп Крупноформатные камеры

>20000$
(там уже не матрица, а движущаяся сканирующая линейка).

Видите, на маленькую матрицу можно впихнуть хоть 20 Мp, только реальной чёткости не будет.

Рис.6 Сравнение размеров матрицы.

4. И последний этап - обработка оцифрованного сигнала в программном обеспечении камеры. Т.к. среднестатическому пользователю мыльницы или телефона не хочется получать многомегабайтные файлы, то непременно происходит сжатие изображения в JPEG формат. На этом этапе происходит львиная доля потерь. Если у нас матрица 6 Mp и каждый пиксель кодируется 8-битами, то для хранения такого файла в идеале должно потребовать 6 Мбайт. В цифромыльничных камерах такой файл ужимается обычно раза в 4 (до 1.5 Мб). Впрочем, эта проблема решается легче всего. Если камера поддерживает RAW-формат, то мы можем получать с матрицы непосредственный слепок до обработки и сжатия, т.е. сырую информацию (raw по-английски - “сырой”). К сожалению, в цифровых мыльницах или телефонах RAW вряд ли поможет существенно поднять разрешение. Там он может быть использован только для коррекции баланса белого (да-да, баланс белого тоже устанавливается уже после оцифровки изображения в программном обеспечении камеры и эту процедуру можно перевалить с процессора камеры на свою умную голову при помощи RAW).

Итак, теперь вы можете по Рис.2 определить, где и на каком этапе потерялось больше деталей. Для фото 2->0.3 это чрезмерное сжатие в JPG. Для фото 0.3->0.3 (мобильный телефон) - это влияние матрицы и плохой объектив. Для двух верхних фото влияние всех факторов практически невелируются из-за того, что изображения получены путём интерполяции большего изображения в меньшее. В данном случае сам алгоритм интерполяции вносит больше искажений, чем все остальные факторы.

Выводы:

1) Мегапиксели - это площадь и чем больше мегапикселей будут размещать на матрицах одинакового физического размера, тем меньше будет прирост разрешающей способности.

2) Мегапиксели - не мера реальной разрешающей способности получаемого изображения. Это просто количество ячеек на матрицы, т.е. то количество точек, которое попадает на вход АЦП. Реальная разрешающая способность измеряется с помощью мир (Рис.7).

Рис.7 Мира по стандарту ISO 12233

Советы:

Нет, увеличение мегапикселей - не плохая тенденция. Маркетологи активно используют числовые параметры техники, чтобы успешно её продвигать: размеры LCD-экранов, зум, массо-габаритные показатели, те же мегапиксели. Главный вывод: для каждой цели - своя техника. Можно покупать любую понравившуюся технику, но лучше будет, если вы будете знать эту правду о мегапикселях. Возможно, это позволит вам сконцентрировать внимание на других параметрах цифровых камер и выбрать более оптимальный вариант. Но главное, конечно, это сама получаемая фотография. Если она вам нравится - то это “ваш” фотоаппарат. Я видел множество примеров, когда на отвратительные фотоаппараты делали шедевры. Никакие мегапиксели не должны вам помешать делать прекрасные снимки - правда лежит вне мегапикселей.

А знаете ли вы, что разрешение человеческого глаза равно 576 Mp



Обновлен 05 ноя 2018 . Создан 26 окт 2011

© 2015 сайт

Примечательно, что даже незначительный прирост линейного разрешения сопровождается основательным увеличением числа мегапикселей. Это напоминает вычисление площади. Чтобы удвоить количество мегапикселей достаточно увеличить линейное разрешение на 41%, а удвоение линейного разрешения приводит к увеличению числа мегапикселей вчетверо. Именно за это своё коварное свойство мегапиксели столь нежно любимы маркетологами, поскольку оно позволяет представить весьма умеренный прогресс, как нечто революционное.

На самом деле, двукратный прирост числа мегапикселей – вовсе не революция, это всего лишь тот минимум, после которого повышение детализации становится заметным для большинства людей, и то лишь при условии, что детализация была ограничена исключительно количеством пикселей, а вовсе не аберрациями объектива, промахами фокусировки, вибрацией камеры и неумелым редактированием. Причём вклад именно разрешения матрицы в общую резкость снимка стремительно снижается по мере роста числа мегапикселей. До 10 Мп этот вклад весьма значителен, от 10 до 20 Мп уже не столь весом, а при разрешении свыше 20 Мп на первый план безоговорочно выходят качество оптики и мастерство фотографа.

Вреден ли избыток мегапикселей?

В целом – нет, не вреден. Я просто считаю нужным подчеркнуть, что и пользы от него не много. На мой взгляд, единственным действительно негативным эффектом, связанным с ростом разрешения, является пропорциональное увеличение объёма файлов, стремительно заполняющих карты памяти, пожирающих дисковое пространство и тормозящих работу компьютера при постобработке.

Мне могут возразить, что фотоаппараты с большим разрешением ещё и больше шумят при высоких значениях ISO. Это справедливо, но лишь при попиксельном сравнении снимков, т.е. при 100% увеличении. При равном масштабе уровень шума будет примерно одинаковым (при прочих равных условиях, разумеется). Например, если снимок, сделанный 36-мегапиксельной камерой уменьшить в Фотошопе до 16 мегапикселей, то по уровню шума он практически не будет отличаться от аналогичного снимка, изначально сделанного 16-мегапиксельной камерой. При этом уменьшенный снимок может выглядеть даже несколько более чётким, поскольку уменьшение изображения (децимация) в определённой степени нейтрализует потерю резкости, неизбежную при байеровской интерполяции.

Таким образом, высокое разрешение действительно позволяет матрице фотоаппарата собрать больше информации о снимаемой сцене и потенциально обеспечить лучшую детализацию снимка. Другой вопрос, сможете ли вы воспользоваться этим потенциалом, или же он воплотится только в лишние гигабайты, занимающие ваш жёсткий диск?

Чтобы понять, какое число мегапикселей будет для вас необходимым и достаточным, следует просто вспомнить, какое конечное применение вы находите для ваших снимков? Рассматриваете ли вы их на мониторе компьютера или, быть может, при помощи цифрового проектора? печатаете ли вы свои снимки, а если да, то каков максимальный размер отпечатков? делитесь ли вы своими снимками в Интернете? подвергаете ли вы снимки какой-либо обработке, или довольствуетесь тем, что получается на выходе из камеры?

Просмотр фотографий на компьютерном мониторе

Самым распространённым среди посетителей моего сайта разрешением экрана является 1920×1080 (Full HD), что примерно соответствует двум мегапикселям. Для ноутбуков самое популярное разрешение – 1366×768 (WXGA), т.е. один мегапиксель. Редкие посетители пользуются мониторами с разрешением 2560×1440 (WQXGA), а это меньше четырёх мегапикселей. Компьютеров iMac с дисплеями типа Retina настолько мало, что ими можно пренебречь.

Вывод, как мне кажется, очевиден: для просмотра фотографий на мониторе персонального компьютера в большинстве случаев достаточно 2-4 Мп. И это если снимок развёрнут на весь экран, а не ютится в маленьком окошке.

Проекторы

Массовые модели современных цифровых проекторов имеют разрешение 1920×1080 (Full HD) или даже меньше, а значит пытаться продемонстрировать публике что-то превышающее пару мегапикселей с их помощью бессмысленно. Проекторы с разрешением 4096×2160 (4K) большинству фотографов просто не по карману, но даже неполные девять мегапикселей – это по современным меркам не столь уж много.

Печать фотографий

Разрешение отпечатка вне зависимости от его размера принято измерять в точках на дюйм (dpi). Например, при печати с разрешением 300 dpi на каждый линейный дюйм (2,54 см) будет приходиться по 300 точек, что соответствует 118 точкам на один линейный сантиметр.

Разрешение меньше 150 dpi считается низким, от 150 до 300 dpi – приемлемым и от 300 dpi и больше – высоким. Высокое разрешение означает, что отдельные точки, составляющие изображение, практически неразличимы для невооружённого глаза. Обычно отпечатки умеренного размера (до A3 включительно) делают с разрешением именно 300 dpi. Для больших отпечатков допустимо использовать меньшее разрешение.

Многое зависит от расстояния, с которого вы собираетесь рассматривать снимок. Маленькие карточки разглядывают вблизи, и их разрешение должно быть по возможности высоким. Большие полотна вешают на стену и любуются ими стоя на некотором отдалении, а потому даже сравнительно невысокое разрешение не будет резать глаз. Это относится и к фотообоям. Огромные билборды, на которые люди смотрят с расстояния в десятки метров, можно печатать с разрешением 32 dpi, и они всё равно будут смотреться неплохо.

Из приведённой ниже таблицы видно, сколько мегапикселей требуется для съёмки и последующей печати фотографий с разрешением как 150, так и 300 dpi при различных размерах отпечатка.

Когда вы последний раз печатали свои снимки на формате A3? Напомню, что самым популярным среди фотолюбителей размером отпечатка является A6, т.е. 10×15 см.

Интернет

Интернет не любит больших фотографий. Во-первых, большие фотографии долго загружаются, а во-вторых, большинству людей просто неинтересно рассматривать микроскопические подробности чужих снимков. Исключение составляют разве что специализированные фотографические форумы. Что же касается социальных сетей, то ваши многомегапиксельные снимки в любом случае будут уменьшены при загрузке на сервер вне зависимости от вашего на то согласия, причём качество децимации будет далеко не самым высоким.

Если вы пересылаете фотографии родственникам и знакомым по электронной почте, то уменьшать их необходимо хотя бы из соображений элементарной порядочности. Кому охота ждать, пока загрузятся громадные файлы с цветочками и котятами?

Словом, и здесь вам будет достаточно буквально пары мегапикселей.

Разумеется, всё это относится исключительно к любительской фотосъёмке и не касается снимков, предназначенных для коммерческого использования. Здесь всё зависит от конкретной ситуации. Если заказчик во что бы то ни стало требует 20 мегапикселей – что ж? – пошлём ему именно 20 мегапикселей, а нужны ли они ему на самом деле – это уже не наша забота.

Обработка снимков

При редактировании фотографий в Adobe Photoshop или ином графическом редакторе некоторый избыток разрешения не только терпим, но и весьма желателен. Во-первых, многие симки нуждаются в кадрировании, т.е. в обрезке краёв, и хорошо, когда у вас есть возможность не экономить пиксели. Во-вторых, грамотное уменьшение изображения – лучший способ скрыть или, по крайней мере, минимизировать такие дефекты изображения как шум, хроматические аберрации, умеренная шевелёнка, артефакты интерполяции и т.д. Иначе говоря, фотография, снятая с высоким разрешением, а затем уменьшенная, практически всегда выглядит лучше, чем изначально снятая с низким разрешением.

Впрочем, следует заметить, что разрешение современных фотоаппаратов столь велико, что запас мегапикселей, которыми можно пожертвовать при редактировании, имеется почти всегда.

Заключение

Мы с вами слишком долго говорили о том, о чём вообще не стоило бы говорить. Подведём же, наконец, итоги.

Чтобы удовлетворить потребности подавляющего большинства фотолюбителей хватит десятка мегапикселей, хотя и такое количество кажется несколько избыточным. Редкий энтузиаст сможет в полной мере реализовать потенциал двадцати мегапикселей, но такие люди обычно знают, чего хотят. Те же фотографы, которым объективно может потребоваться большее разрешение, и которые умеют с ним обращаться, вряд ли стали бы читать эту статью.

Учитывая тот факт, что разрешение более-менее серьёзных фотокамер составляет сегодня в среднем около двух десятков мегапикселей и продолжает расти, считаю дальнейшие дискуссии на эту тему просто излишними. Число мегапикселей больше не является тем параметром, на который стоит всерьёз обращать внимание при выборе камеры.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Артем Кашканов, 2016

С момента появления цифровой фототехники между разными производителями идет своеобразная "гонка мегапикселей", когда новая модель фотоаппарата неизменно получает матрицу все большего и большего разрешения. Темпы этой гонки год от года меняются - достаточно долго "вертикальным" пределом для кропнутых зеркалок были 16-18 мегапикселей, но потом в очередной раз в производство были внедрены какие-то инновации и разрешающая способность кропнутых камер подбирается к отметке в 25 мегапикселей.

Для начала вспомним, что пиксель - это базовый элемент, точка, одна из тех, из которых формируется цифровое изображение. Этот элемент дискретный и неделимый - нет таких понятий как "миллипиксель" или 0.5 пикселя:) Зато есть понятие мегапиксель , под которым понимается массив пикселей в количестве 1 000 000 штук. К примеру, изображение размером 1000*1000 пикселей - имеет разрешение ровно 1 мегапиксель. Разрешение матриц большинства фотокамер давно уже перевалило за отметку 15 мегапикселей. Что это дало? Когда разрешение цифровых фотокамер было 2-3 мегапикселя, каждый лишний мегапиксель был действительно серьезным преимуществом. Сейчас же мы наблюдаем парадоксальную ситуацию - заявленное разрешение матриц любительских зеркалок стало таким, что дает возможность делать отпечатки приемлемого качества форматом чуть не А1! В то время как большинство фотолюбителей редко печатают фотографии больше чем 20 на 30 см, для этого достаточно 3-4 мегапикселей.

Стоит ли менять старый фотоаппарат на такой же по функциям, но "более мегапиксельный?"

Возьмем для примера два фотоаппарата - "простенький" любительский Canon EOS 1100D и "продвинутый" Canon EOS 700D. У первого разрешение матрицы "всего лишь" 12 мегапикселей, у второго - "целых" 18 мегапикселей. Разница - в 1.5 раза. Первая мысль, возникающая у многих фотолюбителей примерно такая - "Поменяв 1100Д на 700Д я буду получать в 1.5 раза лучшую детализацию! Теперь на фотографиях будут видны абсолютно все нюансы - мне этого так не хватало с моей старой камерой!". Эта установка активно поддерживается рекламщиками. Фотолюбитель, убедивший себя, в том что ему совершенно необходима новая камера, разбивает копилку и идет в магазин.

А давайте возьмем калькулятор и посчитаем, какой реальный прирост разрешения фотографии будет при переходе с 12 на 18 мегапикселей. 18-мегапиксельная матрица того же 700D дает изображение шириной 5184 пикселя, в то время как максимальная ширина изображения у 12-мегапиксельного 1100D составляет 4272 пикселя (данные взяты из технических характеристик фотоаппарата). Поделим 5184 на 4272 и получим разницу всего в 21%. То есть, при увеличении разрешения матрицы в 1.5 раза, фотография увеличивается в размерах всего в 1.21 раза. Если изобразить это графически, то получится такое сравнение.

Разница неожиданно мала! Получается, отличия между 12 и 18 мегапикселями не столь уж и существенны. Вывод - слухи о значимости роста мегапикселей сильно преувеличены. Перейти с 12- на 18-мегапиксельный аппарат (или с 18- на 24-мегапиксельный) только в надежде получить значительный прирост детализации на фотографиях - попасть на удочку маркетологов.

Рост мегапикселей в ряде случаев снижает резкость даже при использовании хорошей оптики!

Казалось бы - это вообще похоже на бред! Однако, не будем торопиться с выводами... Логично, что при росте мегапикселей с сохраненем размеров сенсора уменьшается площадь каждого отдельно взятого пикселя. Возможно, вы знаете, что уменьшение площади пикселя приводит к снижению его реальной чувствительности, а, следовательно, к росту уровня шумов (чисто теоретически). Однако, благодаря постоянному совершенствованию технологий и алгоритмов обработки сигналов, новые матрицы, даже несмотря на ощутимое снижение площади пикселей имеют весьма невысокий уровень шумов. Но опасность может подстерегать совсем с другого края...

Я уже рассказывал о такой вещи как дифракция . Не вдаваясь в подробности, напомню, что это свойство волны огибать препятствие, чуть меняя при этом направление. При прохождении пучка света через узкое отверстие, этот пучок имеет свойство как-бы распыляться, подобно спрею (да простят меня физики за такое сравнение:)

В нашем случае в качестве отверстия выступает апертура (диафрагменное отверстие). Чем сильнее зажата диафрагма, тем под большим углом "распыляется спрей". В итоге, "идеально четкая" точка после прохождения апертуры превращается в размытое пятнышко. Чем меньше диаметр апертуры, тем сильнее это размытие. А теперь давайте к этой картинке добавим небольшой кусочек матрицы с пикселями и попробуем приблизительно представить, как будет выглядеть эта "идеально четкая" точка на фотографии...

Естественно, приведенные иллюстрации не претендуют на абсолютную точность, не учтено множество нюансов - хотя бы то, что при формировании изображения происходит интерполяция соседних пикселей и многое другое. Суть в том, чтобы показать, что при уменьшении площади пикселя уменьшается рабочий диапазон диафрагменных чисел. Если у матрицы очень большое разрешение, не стоит слишком сильно зажимать диафрагму объектива, поскольку это приведет к появлению на фотографиях дифракционного размытия . Матрицы с малым количеством мегапикселей позволяют зажимать диафрагму чуть ли не до f/22 и особого размытия при этом не наблюдается.

Купили современную тушку? Позаботьтесь о хорошей оптике!

Разрешение матриц большинства современных любительских фотоаппаратов со сменной оптикой находится между 16 и 24 мегапикселями. Со временем этот диапазон неизбежно будет смещаться в сторону больших значений. Как правило, при этом совершенствуется и оптика, идущая в комплекте с фотоаппаратом. Современные китовые объективы хоть и существенно прибавили в качестве, но все же являются "компромиссными" вариантами. Прорисовать картинку во всех нюансах для запечатления на 24-мегапиксельной матрице они, чаще всего не способны (либо способны, но в очень узком диапазоне настроек, например, только в диапазоне 28-35 мм при диафрагме 8). Если вы ищете бескомпромиссный вариант, вам потребуется качественная и, соответственно, дорогая оптика. Стоимость объектива, схожего с китовым по функциональности, но имеющего лучшую разрешающую способность, в разы превосходит стоимость китового объектива:

Виджет от SocialMart

Кстати, не факт, что "продвинутая" версия будет гарантированно "прорисовывать" картинку - возможно, объектив проектировался в то время, когда о матрицах с таким разрешениях знать не знали. По этой же причине не рекомендуется использовать китовые объективы от очень старых камер. У меня был опыт использования старого китового объектива от Canon EOS 300D (6 мегапикселей) на аппарате 550D (18 мегапикселей) - когда-то брал у друга поиграться на вечер. Старый 18-55 и на 300Д не блистал качеством картинки, но на 550Д он просто убил наповал! Такое впечатление, что резкости не было нигде.

Кстати...

Фиксы (т.е. объективы с фиксированным фокусным расстоянием) - отличная альтернатива бюджетным зумам. Они будут очень кстати, если китовый объектив не обеспечивает желаемой детализации, но лишних 1000-1500 долларов на покупку "крутого" объектива нет. Самые популярные фиксы - "полтинники" (50 мм), точнее их младшие версии со светосилой f/1.8. При стоимости, сравнимой с китовым объективом они существенно превосходят его по качеству изображения, однако обладают меньшей универсальностью - за все нужно платить.

Карманная мыльница с 20 мегапикселями - маразм через край!

Как ни печально, но другого выбора скоро уже не будет. Большинство компактных фотоаппаратов имеют матрицу размером 1/2.3", то есть примерно 6*4.5 мм - в 4 раза меньше, чем у "кропнутой" камеры и в 6 раз меньше, чем у полнокадровой. Разрешение при этом составляет, как правило, не меньше 20 мегапикселей. Нетрудно представить, какой несуразно мелкий размер имеет каждый пиксель. Миниатюрный объектив мыльницы имеет очень малый размер апертуры, что усиливает дифракционное размытие. В итоге картинка при просмотре в 100% масштабе выглядит очень "мягкой".

Слева - 100% кроп с , сделанной 16-мегапиксельной мыльницей Sony TX10 с матрицей 1/2.3". Справа для сравнения - аналогичный вид, снятый на зеркалку. Обратите внимание, что картинка у мыльницы выглядит очень грязно - реальной детализации нет, есть только программная попытка цсилить контуры. И это в центре кадра! По краям кадра детализация снижается еще сильнее и зачастую выглядит как недоразумение:

И так снимает большинство современных компактных мыльниц. Например, вот , в которой приведены 100% кропы с фотоаппарата Panasonic DMC-SZ1 (ближе к концу статьи). Спрашивается - зачем в такие аппараты ставить матрицы с таким высоким разрешением? Практической ценности эти мегапиксели не имеют никакой, зато с точки зрения маркетинга звучит очень убедительно - в фотоаппарате размером со спичечный коробок целых 20 мегапикселей.

Так сколько же должно быть мегапикселей в фотоаппарате?

Возвращаемся к основному вопросу, которому посвящена статья. Все зависит от типа фотоаппарата, размера матрицы и возможностей оптики. Лично я считаю, что разумное количество мегапикселей такое:

  • Для аппаратов со сменной оптикой с китовым объективом - около 12 мегапикселей. При большем разрешении матрицы сужается "рабочий" диапазон фокусных расстояний и диафрагм. Хотите получать максимально детализированное изображение - старайтесь не снимать на "крайних" фокусных расстояниях, устанавливайте диафрагму 8.
  • Для аппаратов со сменной оптикой с фиксами или профессиональными зумами такого явного ограничения нет, главное, чтобы объектив смог прорисовать все эти мегапиксели. Отсутствие НЧ-фильтра дает определенное преимущество, но есть ряд недостатков - о них поговорим чуть ниже. и еще при росте мегапикселей снижается максимальное "рабочее" диафрагменное число. Старайтесь не снимать в обычных условиях с диафрагмой больше 11-13 - будет заметно снижение резкости из-за дифракционного размытия.
  • Для мыльниц с матрицей 1/1.7" и меньше разумный предел - 10-12 мегапикселей. Все что больше - маркетинговый ход, не имеющий к детализации никакого отношения.

Какие характеристики матрицы важнее числа мегапикселей?

Во-первых, физический размер матрицы. Как уже было написано выше, 20 мегапикселей на матрице 1/2.3" и 20 мегапикселей APS-C или FF - совсем разные вещи. Большие матрицы всегда обеспечивают лучшую цветопередачу, более широкий динамический диапазон и более богатые оттенки, чем маленькие по размеру.

Во-вторых, играет роль структура матрицы. Подавляющее большинство современных камер имеет "баеровскую" матрицу со сглаживающим низкочастотным фильтром. Один пиксель изображения формируется путем интерполяции группы 2*2 пикселя матрицы (2 зеленых, 1 красный, 1 синий). НЧ-фильтр чуть "замыливает" картинку, но препятствует возникновению муара на объектах с регулярным повторяющимся рисунком (например, ткань). В последнее время наблюдается тенденция по отказу от НЧ-фильтра у байеровских матриц. Муар при этом подавляется встроенным ПО фотоаппарата.

Стоит отметить еще матрицы X-Trans (используются в фотоаппаратах Fujifilm), которые имеют по сравнению с "баером" более "хаотичную" структуру расположения цветных сенсоров RGB, в них для интерполяции используются группы размером 6*6 пикселей матрицы - это исключает образование муара и позволяет обходиться без НЧ-фильтра, что, как уже говорилось выше, улучшает детализацию изображения.

В конце концов, играет роль новизна техники и ее класс. Какой бы совершенной ни была матрица у фотоаппарата, не меньшую роль играет процессор и внутрикамерное ПО, выполняющее обработку сигнала, полученного с матрицы. Как правило, дорогая техника высокого класса при той же начинке (матрица-процессор), что и любительские камеры, дает лучшее качество картинки - чуть больший динамический диапазон, чуть большее рабочее ISO. Производитель не разглашает причин этих различий, но несложно догадаться, что главная причина - внутрикамерное программное обеспечение. Нередко бывает, что у младшей и старшей модели матрицы одинаковые, но качество картинки разное. Это объясняется тем, что у дешевых моделей обработка сигнала идет по более урезанному алгоритму, поэтому они проигрывают в качестве картинки старшим моделям. Но этот проигрыш реально заметен только в сложных условиях освещенности, например, при съемке на сверхвысоких ISO.

Последние материалы раздела:

Что делать, если завис Мейзу м3 ноте и подобные смартфоны и планшеты на андроиде
Что делать, если завис Мейзу м3 ноте и подобные смартфоны и планшеты на андроиде

Нагревание смартфона Meizu M3 Note до 45-50°C во время зарядки аккумулятора или при длительной работе ресурсоемкого софта является обычным...

Решение проблемы с перегревом Meizu M5 Причины сильного нагревания смартфонов Meizu
Решение проблемы с перегревом Meizu M5 Причины сильного нагревания смартфонов Meizu

Meizu m3 note завис , нагревается и вы не знаете что с ним делать? В этой статье вы узнаете, как сделать принудительную перезагрузку зависшего...

Огромная база данных торрентов, доступных для скачивания
Огромная база данных торрентов, доступных для скачивания

Каталог торрентов на сайте Torrent-Drive.Ru включает в себя все направления, начиная от фильмов и игр для ПК и приставок, заканчивая музыкой,...