ИБП ПК для радиолюбительских целей на TL494 со стабилизацией напряжения и тока. Импульсный блок питания своими руками Плата управления импульсным блоком питания на tl494

[+] Дополнено файлами шкал и фотографиями.

Схема и описание переделок


Рис. 1


В качестве ШИМ-регулятора управления D1 используется микросхема типа TL494. Она выпускается рядом зарубежных фирм под разными наименованиями. Например, IR3M02 (SHARP, Япония), µА494 (FAIRCHILD, США), КА7500 (SAMSUNG, Корея), МВ3759 (FUJITSU, Япония) - и т.д. Все эти микросхемы являются аналогами микросхемы КР1114ЕУ4.

Перед модернизацией надо проверить ИБП на работоспособность, иначе ничего путного не выйдет.

Снимаем переключатель 115/230V и гнезда для подсоединения шнуров. На месте верхнего гнезда устанавливаем микроамперметр РА1 на 150 – 200 мкА от кассетных магнитофонов, родная шкала снята, вместо нее установлена самодельная шкала изготовленная с помощью программы FrontDesigner, файлы шкал прилагаются.


Место нижнего гнезда закрываем жестью и сверлим отверстия для резисторов R4 и R10. На задней панели корпуса устанавливаем клеммы Кл1 и Кл2. На плате ИБП оставляем провода идущие от шин GND и +12В, их мы припаяем к клеммам Кл1 и Кл2. Провод PS-ON (если он есть) соединяем на корпус (GND).

Металлическим резаком перерезаем дорожки на печатной плате ИБП идущие к выводам №№1, 2, 3, 4, 13, 14, 15, 16 микросхемы DA1 и подпаиваем детали согласно схеме (Рис. 1).

Все электролитические конденсаторы на шине +12В заменяем на 25-ти Вольтовые. Штатный вентилятор М1 подключаем через стабилизатор напряжения DA2.
При монтаже также надо учесть, что резисторы R12 и R13 в процессе работы блока нагреваются, их надо расположить поближе к вентилятору.

Правильно собранное, без ошибок, устройство запускается сразу. Изменяя сопротивление резистора R10, проверяем пределы регулировки выходного напряжения, примерно от 3 – 6 до 18 – 25 В (в зависимости от конкретного экземпляра). Подбираем последовательно с R10 постоянный резистор, ограничив верхний предел регулировки на нужном нам уровне (ну скажем 14 В). Подключаем к клеммам нагрузку (сопротивлением 2 – 3 Ома) и изменяя сопротивление резистора R4 регулируем ток в нагрузке.

Если на наклеечке ИБП было написано +12 V 8 A, то не следует пытаться снять с него 15 Ампер.

Итого

Вот и все можно закрывать крышу. Данное устройство можно использовать как лабораторный блок питания, так и зарядное устройство для аккумуляторов. В последнем случае резистором R10 надо выставить конечное напряжение для заряженного аккумулятора (например 14,2 В для автомобильного кислотного аккумулятора), подключить нагрузку и выставить резистором R4 ток зарядки. В случае зарядного устройства для автомобильных аккумуляторов резистор R10 можно заменить на постоянный.


В некоторых экземплярах наблюдалось журчание трансформатора, этот эффект удалось устранить подключением конденсатора на 0,1 мкФ с вывода №1 DА1 на корпус (GND) или подключением конденсатора на 10000 мкФ параллельно конденсатору С3.

Файлы

Шкалы на 8, 12, 16, 20А в FrontDesigner
🕗 20/05/13 ⚖️ 7,3 Kb ⇣ 312
TL494 в полноценном блоке питания

http://www.radiokot.ru/circuit/power/supply/38/

Прошло больше года как я всерьез занялся темой блоков питания. Прочитал замечательные книги Марти Браун "Источники питания" и Семенов "Силовая электроника". В итоге заметил множество ошибок в схемах из интернета, а в последнее время и только и вижу жестокое издевательство над моей любимой микросхемой TL494.

Люблю я TL494 за универсальность, наверное нету такого блока питания, который невозможно было бы на ней реализовать. В данном случае я хочу рассмотреть реализацию наиболее интересной топологии "полумост". Управление транзисторами полумоста делается гальванически развязанным, это требует немало элементов, впринципе преобразователь внутри преобразователя. Несмотря на то, что существует множество полумостовых драйверов, использование в качестве драйвера трансформатора (GDT) списывать еще рано, этот способ наиболее надежный. Бутстрепные драйвера взрывались, а вот взрыва GDT я еще не наблюдал. Драйверный трансформатор представляет собой обычный импульсный трансформатор, рассчитывается по тем же формулами как и силовой учитывая схему раскачки. Часто я видел использование мощных транзисторов в раскачке GDT. Выходы микросхемы могут выдать 200 миллиампер тока и в случае грамотно построенного драйвера это очень даже много, лично я раскачивал на частоте в 100 килогерц IRF740 и даже IRFP460. Посмотрим на схему этого драйвера:



Данная схема включается на каждую выходную обмотку GDT. Дело в том, что в момент мертвого времени первичкая обмотка трансформатора оказывается разомкнутой, а вторичные не нагруженными, поэтому через саму обмотку разряд затворов будет идти крайне долго, введение подпирающего, разрядного резистора будет мешать быстро заряжаться затвору и кушать много энергии впустую. Схема на рисунке избавлена от этих недостатков. Фронты замеренные на реальном макете составили 160нс нарастающий и 120нс спадающий на затворе транзистора IRF740.
Аналогично построены дополняющие до моста транзисторы в раскачке GDT. Применение раскачки мостом обусловлено тем, что до срабатывания триггера питания tl494 по достижении 7 вольт, выходные транзисторы микросхемы будут открыты, в случае включения трансформатора как пуш-пул произойдет короткое замыкание. Мост работает стабильно.

Диодный мост VD6 выпрямляет напряжение с первичной обмотки и если оно превысит напряжение питания то вернет его обратно в конденсатор С2. Происходит это по причине появления напряжения обратного хода, всетаки индуктивность трансформатора не бесконечна.



Схему можно питать через гасящий конденсатор, сейчас работает 400 вольтовый к73-17 на 1.6мкф. диоды кд522 или значительно лучше 1n4148, возможна замена на более мощные 1n4007. Входной мост может быть построен на 1n4007 или использовать готовый кц407. На плате ошибочно применен кц407 в качестве VD6, его туда ни в коем слуdчае недопустимо ставить, этот мост должен быть выполнен на вч диодах. Транзистор VT4 может рассеивать до 2х ватт тепла, но играет он чисто защитную роль, можно применить кт814. Остальные транзисторы кт361, причем крайне нежелательна замена на низкочастотные кт814. Задающий генератор tl494 настроен здесь на частоту в 200 килогерц, это означает что в двухтактном режиме получим 100 килогерц. Мотаем GDT на ферритовом кольце 1-2 сантиметра диаметром. Провод 0.2-0.3мм. Витков должно быть в десяток раз больше чем рассчетное значение, это сильно улучшает форму выходного сигнала. Чем больше намотато - тем меньше нужно подгружать GDT резистором R2. Я намотал на кольце внешним диаметром 18мм 3 обмотки по 70 витков. Связано завышение числа витков и обязательная подгрузка с треугольной составляющей тока, она уменьшается с увеличеним витков, а подгрузка просто уменьшает его процентное влияние. Печатная плата прилагается, однако не совсем соответсвует схеме, но основные блоки на ней есть плюс добавлен обвес одного усилителя ошибки и последовательный стабилизатор для запитки от трансформатора. Плата выполнена под монтаж в разрез платы силовой части.

Стабилизированный полумостовой импульсный блок питания


1



Блок питания содержит малое количество компонентов. В качестве импульсного трансформатора используется типовой понижающий трансформатор из компьютерного блока питания.
На входе стоит NTC термистор (Negative Temperature Coefficient) – полупроводниковый резистор с положительным температурным коэффициентом, который резко увеличивает свое сопротивление, когда превышена некоторая характеристическая температура TRef. Защищает силовые ключи в момент включения на время зарядки конденсаторов.
Диодный мост на входе для выпрямления сетевого напряжения на ток 10А.
Пара конденсаторов на входе берется из расчета 1 мкф на 1 Вт. В нашем случае конденсаторы "вытянут" нагрузку в 220Вт.
Драйвер IR2151 – для управления затворами полевых транзисторов, работающих под напряжением до 600В. Возможная замена на IR2152, IR2153. Если в названии есть индекс "D", например IR2153D, то диод FR107 в обвязке драйвера не нужен. Драйвер поочередно открывает затворы полевых транзисторов с частотой, задаваемой элементами на ножках Rt и Ct.
Полевые транзисторы используются предпочтительно фирмы IR (International Rectifier) . Выбирают на напряжение не менее 400В и с минимальным сопротивлением в открытом состоянии. Чем меньше сопротивление, тем меньше нагрев и выше КПД. Можно рекомендовать IRF740, IRF840 и пр. Внимание! Фланцы полевых транзисторов не закорачивать; при монтаже на радиатор использовать изоляционные прокладки и шайбы-втулки.
Трансформатор типовой понижающий из блока питания компьютера. Как правило, цоколевка соответствует приведенной на схеме. В этой схеме работают и самодельные трансформаторы, намотанные на ферритовых торах. Расчет самодельных трансформаторов ведется на частоту преобразования 100 кГц и половину выпрямленного напряжения (310/2 = 155В). Вторичные обмотки можно расчитать на другое напряжение.

Диоды на выходе с временем восстановления не более 100 нс. Этим требованиям отвечают диоды из семейства HER (High Efficiency Rectifier – высоко-эффективные выпрямительные). Не путать с диодами Шоттки.
Емкость на выходе – буферная емкость. Не следует злоупотреблять и устанавливать емкость более 10000 мкф.
Как и любое устройство, этот блок питания требует внимательной и аккуратной сборки, правильной установки полярных элементов и осторожности при работе с сетевым напряжением.
Правильно собранный блок питания не нуждается в настройке и налаживании. Не следует включать блок питания без нагрузки.

Каждому радиолюбителю, ремонтнику или просто мастеру необходим источник питания, чтобы питать свои схемы, тестировать их при помощи блока питания, либо же просто иногда необходимо зарядить аккумулятор. Случилось так, что и я увлекся этой темой некоторое время назад и мне так же стал необходим подобный девайс. Как обычно, по этому вопросу было перелопачено много страниц в интернете, следил за многими темами на форумах, но точно того, что было нужно мне в моем представлении не было нигде - тогда было решено все сделать самому, собрав всю необходимую информацию по частям. Таким образом родился на свет импульсный лабораторный блок питания на микросхеме TL494.

Что особенного – да вроде мало чего, но я поясню – переделывать родной блок питания компьютера все на той же печатной плате мне кажется не совсем по фен-шую, да и не красиво. С корпусом та же история – дырявая железяка просто не смотрится, хотя если есть фанаты такого стиля, ничего против не имею. Поэтому в основе данной конструкции лежат лишь основные детали от родного компьютерного блока питания, а вот печатная плата (точнее печатные платы – их на самом деле три) сделана уже отдельно и специально под корпус. Корпус здесь состоит также из двух частей – само собой основа корпус Kradex Z4A, а так же вентилятор (кулер), который вы можете видеть на фото. Он является как бы продолжением корпуса, но обо всем по порядку.

Схема блока питания:

Список деталей вы можете увидеть в конце статьи. А теперь коротко разберем схему импульсного лабораторного блока питания. Схема работает на микросхеме TL494, существует много аналогов, однако рекомендую все же использовать оригинальные микросхемы, стоят они совсем недорого, а работают надежно в отличие от китайских аналогов и подделок. Можно также разобрать несколько старых блоков питания от компьютеров и насобирать необходимых деталей от туда, но я рекомендую по возможности использовать все же новые детали и микросхемы – это повысит шанс на успех, так сказать. По причине того, что выходная мощность встроенных ключевых элементов TL494 не достаточная, чтобы управлять мощными транзисторами, работающих на основной импульсный трансформатор Tr2, строится схема управления силовыми транзисторами T3 и T4 с применением управляющего трансформатора Tr1. Данный трансформатор управления использован от старого блока питания компьютера без внесения изменений в состав обмоток. Трансформатор управления Tr1 раскачивается транзисторами T1 и T2.

Сигналы управляющего трансформатора через диоды D8 и D9 поступают на базы силовых транзисторов. Транзисторы T3 и T4 используются биполярные марки MJE13009, можно использовать транзисторы на меньший ток – MJE13007, но здесь все же лучше оставить на больший ток, чтобы повысить надежность и мощность схемы, хотя от короткого замыкания в высоковольтных цепях схемы это не спасет. Далее эти транзисторы раскачивают трансформатор Tr2, который преобразует выпрямленное напряжение 310 вольт от диодного моста VDS1 в необходимое нам (в данном случае 30 – 31 вольт). Данные по перемотке (или намотке с нуля) трансформатора чуть позже. Выходное напряжение снимается с вторичных обмоток этого трансформатора, к которым подключается выпрямитель и ряд фильтров, чтобы напряжение было максимально без пульсаций. Выпрямитель необходимо использовать на диодах Шоттки, чтобы минимизировать потери при выпрямлении и исключить большой нагрев этого элемента, по схеме используется сдвоенный диод Шоттки D15. Здесь также чем больше допустимый ток диодов, тем лучше. При неосторожности при первых запусках схемы большая вероятность испортить эти диоды и силовые транзисторы T3 и T4. В выходных фильтрах схемы стоит использовать электролитические конденсаторы с низким ЭПС (Low ESR). Дроссели L5 и L6 были использованы от старых блоков питания компьютеров (хотя как старых – просто неисправных, но достаточно новых и мощных, кажется 550 Вт). L6 использован без изменения обмотки, представляет собой цилиндр с десятком или около того витков толстого медного провода. L5 необходимо перемотать, так как в компьютере используется несколько уровней напряжения – нам нужно только одно напряжение, которое мы будем регулировать.

L5 представляет собой кольцо желтого цвета (не всякое кольцо пойдет, так как могут применяться ферриты с разными характеристиками, нам нужно именно желтого цвета). На это кольцо нужно намотать примерно 50 витков медного провода диаметром 1,5 мм. Резистор R34 гасящий – он разряжает конденсаторы, чтобы при регулировке не возникло ситуации долгого ожидания уменьшения напряжения при повороте ручки регулировки.

Наиболее подверженные нагреву элементы T3 и T4, а также D15 устанавливаются на радиаторы. В данной конструкции они были также взяты от старых блоков и отформатированы (отрезаны и изогнуты под размеры корпуса и печатной платы).

Схема является импульсной и может вносить в бытовую сеть собственные помехи, поэтому необходимо использовать синфазный дроссель L2. Чтобы отфильтровывать уже имеющиеся помехи сети используются фильтры с применением дросселей L3 и L4. Терморезистор NTC1 исключит скачок тока в момент включения схемы в розетку, старт схемы получится более мягкий.

Чтобы управлять напряжением и током, а также для работы микросхемы TL494 необходимо напряжение более низкого уровня, чем 310 вольт, поэтому используется отдельная схема питания для этого. Построена она на малогабаритном трансформаторе Tr3 BV EI 382 1189. С вторичной обмотки напряжение выпрямляется и сглаживается конденсатором – просто и сердито. Таким образом, получаем 12 вольт, необходимые для управляющей части схемы блока питания. Далее 12 вольт стабилизируются до 5 вольт при помощи микросхемы линейного стабилизатора 7805 – это напряжение используется для схемы индикации напряжения и тока. Также искусственно создается напряжение -5 вольт для питания операционного усилителя схемы индикации напряжения и тока. В принципе можно использовать любую доступную схему вольтметра и амперметра для данного блока питания и при отсутствии необходимости данный каскад стабилизации напряжения можно исключить. Как правило, используются схемы измерения и индикации, построенные на микроконтроллерах, которым необходимо питания порядка 3,3 – 5 вольта. Подключение амперметра и вольтметра указано на схеме.

На фото печатная плата с микроконтроллером - амперметр и вольтметр, к панели прикреплены на болтики, которые ввинчиваются в гайки, надежно приклеенные к пластмассе супер клеем. Данный индикатор имеет ограничение по измерению тока до 9,99 А, что явно маловато для данного блока питания. Кроме как функций индикации модуль измерения тока и напряжения больше никак не задействован относительно основной платы устройства. Функционально подойдет любой измерительный модуль на замену.

Схема регулировки напряжения и тока построена на четырех операционных усилителях (используется LM324 – четыре операционных усилителя в одном корпусе). Для питания этой микросхемы стоит использовать фильтр по питания на элементах L1 и C1, C2. Настройка схемы заключается в подборе элементов, помеченных звездочкой для задания диапазонов регулирования. Схема регулировки собрана на отдельной печатной плате. Кроме того, для более плавной регулировки по току можно использовать несколько переменных резисторов соединенных соответствующим образом.

Для задания частоты преобразователя необходимо подобрать номинал конденсатора C3 и номинал резистора R3. На схеме указана небольшая табличка с расчетными данными. Слишком большая частота может увеличить потери на силовых транзисторах при переключении, поэтому слишком увлекаться не стоит, оптимально, на мой взгляд, использовать частоту 70-80 кГц, а то и меньше.

Теперь о параметрах намотки или перемотки трансформатора Tr2. Основу я также использовал от старых блоков питания компьютера. Если большой ток и большое напряжения вам не нужны, то можно такой трансформатор не перематывать, а использовать готовый, соединив обмотки соответствующим образом. Однако если необходим больший ток и напряжение, то трансформатор необходимо перемотать, чтобы получить более лучший результат. Прежде всего придется разобрать сердечник, который у нас имеется. Это самый ответственный момент, так как ферриты достаточно хрупкие, а ломать их не стоит, иначе все на мусор. Итак, чтобы разобрать сердечник, его необходимо нагреть, так как для склеивания половинок обычно изготовитель использует эпоксидную смолу, которая при нагреве размягчается. Открытые источники огня использовать не стоит. Хорошо подойдет электронагревательное оборудование, в бытовых условиях – это, например электроплита. При нагреве аккуратно разъединяем половинки сердечника. После остывания снимаем все родные обмотки. Теперь нужно рассчитать необходимое количество витков первичной и вторичной обмоток трансформатора. Для этого можно использовать программу ExcellentIT(5000), в которой задаем необходимые нам параметры преобразователя и получаем расчет количества витков относительно используемого сердечника. Далее после намотки сердечник трансформатор необходимо обратно склеить, желательно также использовать высокопрочный клей или эпоксидную смолу. При покупке нового сердечника потребность в склейке может отсутствовать, так как часто половинки сердечника могут стягиваться металлическими скобами и болтиками. Обмотки необходимо наматывать плотно, чтобы исключить акустический шум при работе устройства. По желанию обмотки можно заливать какими-нибудь парафинами.

Печатные платы проектировались для корпуса Z4A. Сам корпус подвергается небольшим доработкам, чтобы обеспечить циркуляцию воздуха для охлаждения. Для этого по бокам и сзади сверлится несколько отверстий, а сверху прорезаем отверстие для вентилятора. Вентилятор дует вниз, лишний воздух уходит через отверстия. Можно вентилятор расположить и наоборот, чтоы он высасывал воздух из корпуса. По факту охлаждение вентилятором редко когда понадобится, к тому же даже при больших нагрузках элементы схемы сильно не греются.

Также подготавливаются лицевые панели. Индикаторы напряжения и тока используются с применением семисегментных индикаторов, а в качестве светофильтра для этих индикаторов используется металлизированная антистатическая пленка, наподобие той, в которую упаковывают радиоэлементы с пометкой чувствительности к электростатике. Можно также использовать полупрозрачную пленку, которую клеят на оконные стекла, либо тонирующую пленку для автомобилей. Набор элементов на лицевой панели спереди и сзади можно компоновать по любому вкусу. В моем случае сзади разъем для подключения к розетке, отсек предохранителя и выключатель. Спереди – индикаторы тока и напряжения, светодиоды индикации стабилизации тока (красный) и стабилизации напряжения (зеленый), ручки переменных резисторов для регулировки тока и напряжения и быстрозажимной разъем, к которому подключено выходное напряжение.

При правильной сборке блок питания нуждается только в подстройке диапазонов регулирования.

Защита по току (стабилизация по току) работает следующим образом: при превышении установленного тока на микросхему TL494 подается сигнал о снижении напряжения – чем меньше напряжение, тем меньше ток. При этом на лицевой панели загорается красный светодиод, сигнализирующий о превышении установленного тока, либо о коротком замыкании. В нормальном режиме стабилизации напряжения горит зеленый светодиод.

Основные характеристики импульсного лабораторного блока питания зависят в основном от применяемой элементной базы, в данном варианте характеристики следующие:

  • Входное напряжение – 220 вольт переменного тока
  • Выходное напряжение – от 0 до 30 вольт постоянного тока
  • Выходной ток составляет более 15 А (фактически тестированное значение)
  • Режим стабилизации напряжения
  • Режим стабилизации тока (защита от короткого замыкания)
  • Индикация обоих режимов светодиодами
  • Малые габариты и вес при большой мощности
  • Регулировка ограничения тока и напряжения

Подводя итог, можно отметить, что лабораторный блок питания получился достаточно качественный и мощный. Это позволяет использовать данный вариант блока питания как для тестирования каких-то своих схем, так и вплоть до зарядки автомобильных аккумуляторов. Стоит отметить также то, что емкости на выходе стоят достаточно большие, поэтому коротких замыканий лучше не допускать, так как разряд конденсаторов с большой вероятностью может вывести схему из строя (ту, к которой подключаемся), однако без этой емкости выходное напряжение будет хуже – возрастут пульсации. Это особенность именно импульсного блока, в аналоговых блока питания выходная емкость не превышает 10 мкФ как правило в силу своей схемотехники. Таким образом, получаем универсальный лабораторный импульсный блок питания способный работать в широком диапазоне нагрузок практически от нуля до десятков ампер и вольт. Блок питания прекрасно зарекомендовал себя как при питании небольших схем при тестировании (но тут защита от КЗ поможет мало из-за большой выходной емкости) с потреблением в миллиамперы, так и в применении в ситуациях, кода необходима большая выходная мощность за время моего скудного опыта в области электроники.

Этот лабораторный блок питания я сделал около 4 лет назад, когда только начинал делать первые шаги в электронике. До настоящего времени ни одной поломку с учетом того, что работал часто далеко за пределами 10 ампер (зарядка автомобильных аккумуляторов). При описании за счет давнего срока изготовления мог что-то упустить, вопросы, замечания складывайте в комментариях.

По для расчета трансформатора:

Прилагаю к статье печатные платы (вольтметр и амперметр сюда не входят - можно применять абсолютно любые).

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 ШИМ контроллер

TL494

1 В блокнот
IC2 Операционный усилитель

LM324

1 В блокнот
VR1 Линейный регулятор

L7805AB

1 В блокнот
VR2 Линейный регулятор

LM7905

1 В блокнот
T1, T2 Биполярный транзистор

C945

2 В блокнот
T3, T4 Биполярный транзистор

MJE13009

2 В блокнот
VDS2 Диодный мост MB105 1 В блокнот
VDS1 Диодный мост GBU1506 1 В блокнот
D3-D5, D8, D9 Выпрямительный диод

1N4148

5 В блокнот
D6, D7 Выпрямительный диод

FR107

2 В блокнот
D10, D11 Выпрямительный диод

FR207

2 В блокнот
D12, D13 Выпрямительный диод

FR104

2 В блокнот
D15 Диод Шоттки F20C20 1 В блокнот
L1 Дроссель 100 мкГн 1 В блокнот
L2 Синфазный дроссель 29 мГн 1 В блокнот
L3, L4 Дроссель 10 мкГн 2 В блокнот
L5 Дроссель 100 мкГн 1 на желтом кольце В блокнот
L6 Дроссель 8 мкГн 1 В блокнот
Tr1 Импульсный трансформатор EE16 1 В блокнот
Tr2 Импульсный трансформатор EE28 - EE33 1 ER35 В блокнот
Tr3 Трансформатор BV EI 382 1189 1 В блокнот
F1 Предохранитель 5 А 1 В блокнот
NTC1 Терморезистор 5.1 Ом 1 В блокнот
VDR1 Варистор 250 В 1 В блокнот
R1, R9, R12, R14 Резистор

2.2 кОм

4 В блокнот
R2, R4, R5, R15, R16, R21 Резистор

4.7 кОм

6 В блокнот
R3 Резистор

5.6 кОм

1 подбирать исходя из необходимой частоты В блокнот
R6, R7 Резистор

510 кОм

2 В блокнот
R8 Резистор

1 МОм

1 В блокнот
R13 Резистор

1.5 кОм

1 В блокнот
R17, R24 Резистор

22 кОм

2 В блокнот
R18 Резистор

1 кОм

1 В блокнот
R19, R20 Резистор

22 Ом

2 В блокнот
R22, R23 Резистор

1.8 кОм

2 В блокнот
R27, R28 Резистор

2.2 Ом

2 В блокнот
R29, R30 Резистор

470 кОм

2 1-2 Вт В блокнот
R31 Резистор

100 Ом

1 1-2 Вт В блокнот
R32, R33 Резистор

15 Ом

2 В блокнот
R34 Резистор

1 кОм

1 1-2 Вт В блокнот
R10, R11 Переменный резистор 10 кОм 2 можно 3 или 4 использовать В блокнот
R25, R26 Резистор

0.1 Ом

2 шунты, мощность зависит от выходной мощности БП В блокнот
C1, C8, C27, C28, C30, C31 Конденсатор 0.1 мкФ 7 В блокнот
C2, C9, C22, C25, C26, C34, C35 Электролитический конденсатор 47 мкФ 7 В блокнот
C3 Конденсатор 1 нФ 1 пленочный

Рассматриваемая микросхема относится к перечню наиболее распространенных и широко применяемых интегральных электронных схем. Предшественником ее была серия UC38хх ШИМ-контроллеров компании Unitrode. В 1999 г. эта фирма была куплена компанией Texas Instruments, и с тех пор началось развитие линейки этих контроллеров, приведшее к созданию в начале 2000-х гг. микросхем серии TL494. Кроме уже отмеченных выше ИБП, их можно встретить в регуляторах постоянного напряжения, в управляемых приводах, в устройствах плавного пуска, - словом везде, где используется ШИМ-регулирование.

Среди фирм, клонировавших данную микросхему, значатся такие всемирно известные бренды, как Motorola, Inc, International Rectifier, Fairchild Semiconductor, ON Semiconductor. Все они дают подробное описание своей продукции, так называемый TL494CN datasheet.

Документация

Анализ описаний рассматриваемого типа микросхемы от разных производителей показывает практическую идентичность ее характеристик. Объем сведений, приводимых разными фирмами, практически одинаков. Более того, TL494CN datasheet от таких брендов, как Motorola, Inc и ON Semiconductor повторяют друг друга в своей структуре, приводимых рисунках, таблицах и графиках. Несколько отличается от них изложение материала у фирмы Texas Instruments, однако при внимательном его изучении становится ясно, что имеется в виду идентичное изделие.

Назначение микросхемы TL494CN

Описание ее по традиции начнем с назначения и перечня внутренних устройств. Она представляет собой ШИМ-контроллер с фиксированной частотой, предназначенный преимущественно для применения в ИБП, и содержащий следующие устройства:

  • генератор пилообразного напряжения (ГПН);
  • усилители ошибки;
  • источник эталонного (опорного) напряжения +5 В;
  • схема регулировки «мертвого времени»;
  • выходные на ток до 500 мА;
  • схема выбора одно- или двухтактного режима работы.

Предельные параметры

Как и у любой другой микросхемы, у TL494CN описание в обязательном порядке должно содержать перечень предельно допустимых эксплуатационных характеристик. Дадим их на основании данных Motorola, Inc:

  1. Напряжение питания: 42 В.
  2. Напряжение на коллекторе выходного транзистора: 42 В.
  3. Ток коллектора выходного транзистора: 500 мА.
  4. Диапазон входного напряжения усилителя: от - 0,3 В до +42 В.
  5. Рассеиваемая мощность (при t< 45 °C): 1000 мВт.
  6. Диапазон температур хранения: от -55 до +125 °С.
  7. Диапазон рабочих температур окружающей среды: от 0 до +70 °С.

Следует отметить, что параметр 7 для микросхемы TL494IN несколько шире: от -25 до +85 °С.

Конструкция микросхемы TL494CN

Описание на русском языке выводов ее корпуса приведено на рисунке, расположенном ниже.

Микросхема помещена в пластиковый (на это указывает литера N в конце ее обозначения) 16-контактный корпус с выводами pdp-типа.

Внешний вид ее показан на фото ниже.

TL494CN: схема функциональная

Итак, задачей данной микросхемы является широтно-импульсная модуляция (ШИМ, или англ. Pulse Width Modulated (PWM)) импульсов напряжения, вырабатываемых внутри как регулируемых, так и нерегулируемых ИБП. В блоках питания первого типа диапазон длительности импульсов, как правило, достигает максимально возможной величины (~ 48% для каждого выхода в двухтактных схемах, широко используемых для питания автомобильных аудиоусилителей).

Микросхема TL494CN имеет в общей сложности 6 выводов для выходных сигналов, 4 из них (1, 2, 15, 16) являются входами внутренних усилителей ошибки, используемых для защиты ИБП от токовых и потенциальных перегрузок. Контакт № 4 - это вход сигнала от 0 до 3 В для регулировки скважности выходных прямоугольных импульсов, а № 3 является выходом компаратора и может быть использован несколькими способами. Еще 4 (номера 8, 9, 10, 11) представляют собой свободные коллекторы и эмиттеры транзисторов с предельно допустимым током нагрузки 250 мА (в длительном режиме не более 200 мА). Они могут соединяться попарно (9 с 10, а 8 с 11) для управления мощными полевыми с предельно допустимым током 500 мА (не более 400 мА в длительном режиме).

Каково же внутренне устройство TL494CN? Схема ее показана на рисунке ниже.

Микросхема имеет встроенный источник опорного напряжения (ИОН) +5 В (№ 14). Он обычно используется в качестве эталонного напряжения (с точностью ± 1%), подаваемого на входы схем, потребляющих не более 10 мА, например, на вывод 13 выбора одно- или двухтактного режима работы микросхемы: при наличии на нем +5 В выбирается второй режим, при наличии на нем минуса напряжения питания - первый.

Для настройки частоты генератора пилообразного напряжения (ГПН) используют конденсатор и резистор, подключаемые к контактам 5 и 6 соответственно. И, конечно, микросхема имеет выводы для подключения плюса и минуса источника питания (номера 12 и 7 соответственно) в диапазоне от 7 до 42 В.

Из схемы видно, что имеется еще ряд внутренних устройств в TL494CN. Описание на русском языке их функционального назначения будет дано ниже по ходу изложения материала.

Функции выводов входных сигналов

Как и любое другое электронное устройство. рассматриваемая микросхема имеет свои входы и выходы. Мы начнем с первых. Выше уже было дан перечень этих выводов TL494CN. Описание на русском языке их функционального назначения будет далее приведено с подробными пояснениями.

Вывод 1

Это положительный (неинвертирующий) вход усилителя сигнала ошибки 1. Если напряжение на нем ниже, чем напряжение на выводе 2, выход усилителя ошибки 1 будет иметь низкий уровень. Если же оно будет выше, чем на контакте 2, сигнал усилителя ошибки 1 станет высоким. Выход усилителя по существу, повторяет положительный вход с использованием вывода 2 в качестве эталона. Функции усилителей ошибки будут более подробно описаны ниже.

Вывод 2

Это отрицательное (инвертирующий) вход усилителя сигнала ошибки 1. Если этот вывод выше, чем на выводе 1, выход усилителя ошибки 1 будет низким. Если же напряжение на этом выводе ниже, чем напряжение на выводе 1, выход усилителя будет высоким.

Вывод 15

Он работает точно так же, как и № 2. Зачастую второй усилитель ошибки не используется в TL494CN. Схема включения ее в этом случае содержит вывод 15 просто подключенный к 14-му (опорное напряжение +5 В).

Вывод 16

Он работает так же, как и № 1. Его обычно присоединяют к общему № 7, когда второй усилитель ошибки не используется. С выводом 15, подключенным к +5 В и № 16, подключенным к общему, выход второго усилителя низкий и поэтому не имеет никакого влияния на работу микросхемы.

Вывод 3

Этот контакт и каждый внутренний усилитель TL494CN связаны между собой через диоды. Если сигнал на выходе какого-либо из них меняется с низкого на высокий уровень, то на № 3 он также переходит в высокий. Когда сигнал на этом выводе превышает 3,3 В, выходные импульсы выключаются (нулевая скважность). Когда напряжение на нем близко к 0 В, длительность импульса максимальна. В промежутке между 0 и 3,3 В, длительность импульса составляет от 50% до 0% (для каждого из выходов ШИМ-контроллера - на выводах 9 и 10 в большинстве устройств).

Если необходимо, контакт 3 может быть использован в качестве входного сигнала или может быть использован для обеспечения демпфирования скорости изменения ширины импульсов. Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на ШИМ-контроллере (импульсы от него будут отсутствовать).

Вывод 4

Он управляет диапазоном скважности выходных импульсов (англ. Dead-Time Control). Если напряжение на нем близко к 0 В, микросхема будет в состоянии выдавать как минимально возможную, так и максимальную ширину импульса (что задается другими входными сигналами). Если на этот вывод подается напряжение около 1,5 В, ширина выходного импульса будет ограничена до 50% от его максимальной ширины (или ~ 25% рабочего цикла для двухтактного режима ШИМ-контроллера). Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на TL494CN. Схема включения ее зачастую содержит № 4, подключенный напрямую к земле.

  • Важно запомнить ! Сигнал на выводах 3 и 4 должен быть ниже ~ 3,3 В. А что будет, если он близок, например, к + 5 В? Как тогда поведет себя TL494CN? Схема преобразователя напряжения на ней не будет вырабатывать импульсы, т.е. не будет выходного напряжения от ИБП.

Вывод 5

Служит для присоединения времязадающего конденсатора Ct, причем второй его контакт присоединяется к земле. Значения емкости обычно от 0,01 μF до 0,1 μF. Изменения величины этого компонента ведут к изменению частоты ГПН и выходных импульсов ШИМ-контроллера. Как правило здесь используются конденсаторы высокого качества с очень низким температурным коэффициентом (с очень небольшим изменением емкости с изменением температуры).

Вывод 6

Для подключения врямязадающего резистора Rt, причем второй его контакт присоединяется к земле. Величины Rt и Ct определяют частоту ГПН.

  • f = 1,1: (Rt х Ct).

Вывод 7

Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.

Вывод 12

Он замаркирован литерами VCC. К нему присоединяется «плюс» источника питания TL494CN. Схема включения ее обычно содержит № 12, соединенный с коммутатором источника питания. Многие ИБП используют этот вывод, чтобы включать питание (и сам ИБП) и выключать его. Если на нем имеется +12 В и № 7 заземлен, ГПН и ИОН микросхемы будут работать.

Вывод 13

Это вход режима работы. Его функционирование было описано выше.

Функции выводов выходных сигналов

Выше они же были перечислены для TL494CN. Описание на русском языке их функционального назначения будет ниже приведено с подробными пояснениями.

Вывод 8

На этой микросхеме есть 2 npn-транзистора, которые являются ее выходными ключами. Этот вывод - коллектор транзистора 1, как правило, подключенный к источнику постоянного напряжения (12 В). Тем не менее в схемах некоторых устройств он используется в качестве выхода, и можно увидеть на нем меандр (как и на № 11).

Вывод 9

Это эмиттер транзистора 1. Он управляет мощным транзистором ИБП (полевым в большинстве случаев) в двухтактной схеме либо напрямую, либо через промежуточный транзистор.

Вывод 10

Это эмиттер транзистора 2. В однотактном режиме работы сигнал на нем такой же, как и на № 9. В двухтактном режиме сигналы на №№ 9 и 10 противофазны, т. е. когда на одном высокий уровень сигнала, то на другом он низкий, и наоборот. В большинстве устройств сигналы с эмиттеров выходных транзисторных ключей рассматриваемой микросхемы управляют мощными полевыми транзисторами, приводимыми в состояние ВКЛЮЧЕНО, когда напряжение на выводах 9 и 10 высокое (выше ~ 3,5 В, но он никак не относится к уровню 3,3 В на №№ 3 и 4).

Вывод 11

Это коллектор транзистора 2, как правило, подключенный к источнику постоянного напряжения (+12 В).

  • Примечание : В устройствах на TL494CN схема включения ее может содержать в качестве выходов ШИМ-контроллера как коллекторы, таки эмиттеры транзисторов 1 и 2, хотя второй вариант встречается чаще. Есть, однако, варианты, когда именно контакты 8 и 11 являются выходами. Если вы найдете небольшой трансформатор в цепи между микросхемой и полевыми транзисторами, выходной сигнал, скорее всего, берется именно с них (с коллекторов).

Вывод 14

Это выход ИОН, также описанный выше.

Принцип работы

Как же работает микросхема TL494CN? Описание порядка ее работы дадим по материалам Motorola, Inc. Выход импульсов с широтной модуляцией достигается путем сравнения положительного пилообразного сигнала с конденсатора Ct с любым из двух управляющих сигналов. Логические схемы ИЛИ-НЕ управления выходными транзисторами Q1 и Q2, открывают их только тогда, когда сигнал на тактовом входе (С1) триггера (см. функциональную схему TL494CN) переходит в низкий уровень.

Таким образом, если на входе С1 триггера уровень логической единицы, то выходные транзисторы закрыты в обоих режимах работы: однотактном и двухтактном. Если на этом входе присутствует сигнал то в двухтактном режиме транзисторные ключи открываются поочердно по приходу среза тактового импульса на триггер. В однотактном режиме триггер не используется, и оба выходных ключа открываются синхронно.

Это открытое состояние (в обоих режимах) возможно только в той части периода ГПН, когда пилообразное напряжение больше, чем управляющие сигналы. Таким образом, увеличение или уменьшение величины управляющего сигнала вызывает соответственно линейное увеличение или уменьшение ширины импульсов напряжения на выходах микросхемы.

В качестве управляющих сигналов может быть использовано напряжение с вывода 4 (управление «мертвым временем»), входы усилителей ошибки или вход сигнала обратной связи с вывода 3.

Первые шаги по работе с микросхемой

Прежде чем делать какое-либо полезное устройство, рекомендуется изучить, как работает TL494CN. Как проверить ее работоспособность?

Возьмите свою макетную плату, установите на нее микросхему и подключите провода согласно нижеприведенной схеме.

Если все подключено правильно, то схема будет работать. Оставьте выводы 3 и 4 не свободными. Используйте свой осциллограф, чтобы проверить работу ГПН - на выводе 6 вы должны увидеть пилообразное напряжение. Выходы будут нулевыми. Как же определить их работоспособность в TL494CN. Проверка ее может быть выполнена следующим образом:

  1. Подключите выход обратной связи (№ 3) и выход управления «мертвым временем» (№ 4) к общему выводу (№ 7).
  2. Теперь вы должны обнаружить прямоугольные импульсы на выходах микросхемы.

Как усилить выходной сигнал?

Выход TL494CN является довольно слаботочным, а вы, конечно же, хотите большей мощности. Таким образом, мы должны добавить несколько мощных транзисторов. Наиболее просто использовать (и очень легко получить - из старой материнской платы компьютера) n-канальные силовые МОП-транзисторы. Мы должны при этом проинвертировать выход TL494CN, т. к. если мы подключим n-канальный МОП-транзистор к нему, то при отсутствии импульса на выходе микросхемы он будет открытым для протекания постоянного тока. При может попросту сгореть… Так что достаем универсальный npn-транзистор и подключаем согласно нижеприведенной схеме.

Мощный МОП-транзистор в этой схеме управляется в пассивном режиме. Это не очень хорошо, но для целей тестирования и малой мощности вполне подходит. R1 в схеме является нагрузкой npn-транзистора. Выберите его в соответствии с максимально допустимым током его коллектора. R2 представляет собой нагрузку нашего силового каскада. В следующих экспериментах он будет заменен трансформатором.

Если мы теперь посмотрим осциллографом сигнал на выводе 6 микросхемы, то увидите «пилу». На № 8 (К1) можно по-прежнему видеть прямоугольные импульсы, а на стоке МОП-транзистора такие же по форме импульсы, но большей величины.

А как поднять напряжение на выходе?

Теперь давайте получим некоторое напряжение повыше при помощи TL494CN. Схема включения и разводки используется та же самая - на макетной плате. Конечно, достаточно высокого напряжения на ней не получить, тем более что нет какого-либо радиатора на силовых МОП-транзисторах. И все же, подключите небольшой трансформатор к выходному каскаду, согласно этой схеме.

Первичная обмотка трансформатора содержит 10 витков. Вторичная обмотка содержит около 100 витков. Таким образом, коэффициент трансформации равен 10. Если подать 10В в первичную обмотку, вы должны получить около 100 В на выходе. Сердечник выполнен из феррита. Можно использовать некоторый среднего размера сердечник от трансформатора блока питания ПК.

Будьте осторожны, выход трансформатора под высоким напряжением. Ток очень низкий и не убьет вас. Но можно получить хороший удар. Еще одна опасность - если вы установите большой конденсатор на выходе, он будет накапливать большой заряд. Поэтому после выключения схемы, его следует разрядить.

На выходе схемы можно включить любой индикатор вроде лампочки, как на фото ниже.

Она работает от напряжения постоянного тока, и ей необходимо около 160 В, чтобы засветиться. (Питание всего устройства составляет около 15 В - на порядок ниже.)

Схема с трансформаторным выходом широко применяется в любых ИБП, включая и блоки питания ПК. В этих устройствах, первый трансформатор, подключенный через транзисторные ключи к выходам ШИМ-контроллера, служит для низковольтной части схемы, включающей TL494CN, от ее высоковольтной части, содержащей трансформатор сетевого напряжения.

Регулятор напряжения

Как правило, в самодельных небольших электронных устройствах питание обеспечивает типовой ИБП ПК, выполненный на TL494CN. Схема включения БП ПК общеизвестна, а сами блоки легкодоступны, поскольку миллионы старых ПК ежегодно утилизируются или продаются на запчасти. Но как правило, эти ИБП вырабатывают напряжения не выше 12 В. Этого слишком мало для частотно-регулируемого привода. Конечно, можно было бы постараться и использовать ИБП ПК повышенного напряжения для 25 В, но его будет трудно найти, и слишком много мощности будет рассеиваться на напряжении 5 В в логических элементах.

Однако на TL494 (или аналогах) можно построить любые схемы с выходом на повышенную мощность и напряжение. Используя типичные детали из ИБП ПК и мощные МОП-транзисторы от материнской платы, можно построить ШИМ-регулятор напряжения на TL494CN. Схема преобразователя представлена на рисунке ниже.

На ней можно увидеть схему включения микросхемы и выходной каскад на двух транзисторах: универсальном npn- и мощном МОП.

Основные части: T1, Q1, L1, D1. Биполярный T1 используется для управления мощным МОП-транзистором, подключенным упрощенным способом, так наз. «пассивным». L1 является дросселем индуктивности от старого принтера HP (около 50 витков, 1 см высота, ширина 0,5 см с обмотками, открытый дроссель). D1 - это от другого устройства. TL494 подключена альтернативным способом по отношению к вышеописанному, хотя можно использовать любой из них.

С8 - конденсатор малой емкости, чтобы предотвратить воздействие шумов, поступающих на вход усилителя ошибки, величина 0,01uF будет более или менее нормальной. Большие значения будут замедлять установку требуемого напряжения.

С6 - еще меньший конденсатор, он используется для фильтрации высокочастотных помех. Его емкость - до нескольких сотен пикофарад.

Этот стабилизатор обладает неплохими характеристиками, имеет плавную регулировку тока и напряжения, хорошую стабилизацию, без проблем терпит короткие замыкания, относительно простой и не требует больших финансовых затрат. Он обладает высоким кпд за счет импульсного принципа работы, выходной ток может доходить до 15 ампер, что позволит построить мощное зарядное устройство и блок питания с регулировкой тока и напряжения. При желании можно увеличить выходной ток до 20-и и более ампер.

В интернете подобных устройств, каждое имеет свои достоинства и недостатки, но принцип работы у них одинаковый. Предлагаемый вариант - это попытка создания простого и достаточно мощного стабилизатора.

За счет применения полевых ключей удалось значительно увеличить нагрузочную способность источника и снизить нагрев на силовых ключах. При выходном токе до 4-х ампер транзисторы и силовой диод можно не устанавливать на радиаторы.

Номиналы некоторых компонентов на схеме могут отличаться от номиналов на плате, т.к. плату разрабатывал для своих нужд.

Диапазон регулировки выходного напряжения от 2-х до 28 вольт, в моем случае максимальное напряжение 22 вольта, т.к. я использовал низковольтные ключи и поднять напряжение выше этого значения было рискованно, а так при входном напряжении около 30 Вольт, на выходе спокойно можно получить до 28-и Вольт. Диапазон регулировки выходного тока от 60mA до 15A Ампер, зависит от сопротивления датчика тока и силовых элементов схемы.

Устройство не боится коротких замыканий, просто сработает ограничение тока.

Собран источник на базе ШИМ контроллера TL494 , выход микросхемы дополнен драйвером для управления силовыми ключами.

Хочу обратить ваше внимание на батарею конденсаторов установленных на выходе. Следует использовать конденсаторы с низким внутренним сопротивлением на 40-50 вольт, с суммарной емкостью от 3000 до 5000мкФ.

Нагрузочный резистор на выходе применен для быстрого разряда выходных конденсаторов, без него измерительный вольтметр на выходе будет работать с запаздыванием, т.к. при уменьшении выходного напряжения конденсаторам нужно время, для разрядки, а этот резистор быстро их разрядит. Сопротивление этого резистора нужно пересчитать, если на вход схемы подается напряжение больше 24-х вольт. Резистор двух ваттный, рассчитан с запасом по мощности, в ходе работы может греться, это нормально.

Как это работает:

ШИМ контроллер формирует управляющие импульсы для силовых ключей. При наличии управляющего импульса транзистор, и питание по открытому каналу транзистора через дроссель поступает на накопительный конденсатор. Не забываем, что дроссель является индуктивной нагрузкой, которым свойственно накапливание энергии и отдача за счет самоиндукции. Когда транзистор закрывается накопленный в дросселе заряд через диод шоттки продолжит подпитывать нагрузку. Диод в данном случае откроется, т.к. напряжение с дросселя имеет обратную полярность. Этот процесс будет повторяться десятки тысяч раз в секунду, в зависимости от рабочей частоты микросхемы ШИМ. По факту ШИМ контроллер всегда отслеживает напряжение на выходном конденсаторе.

Стабилизация выходного напряжения происходит следующим образом. На неинвертирующий вход первого усилителя ошибки микросхемы (вывод 1) поступает выходное напряжение стабилизатора, где оно сравнивается с опорным напряжением, которое присутствует на инверсном входе усилителя ошибки. При снижении выходного напряжения будет снижаться и напряжение на выводе 1, и если оно будет меньше опорного напряжения, ШИМ контроллер будет увеличивать длительности импульсов, следовательно транзисторы больше времени будут находиться в открытом состоянии и больше тока будет накачиваться в дроссель, если же выходное напряжение больше опорного, произойдет обратное - микросхема уменьшит длительность управляющих импульсов. Указанным делителем можно принудительно менять напряжение на неинвертирующщем входе усилителя ошибки, этим увеличивая или уменьшая выходное напряжение стабилизатора в целом. Для наиболее точной регулировки напряжения применён подстроечный многооборотный резистор, хотя можно использовать обычный.

Минимальное выходное напряжение составляет порядка 2 вольт, задается указанным делителем, при желании можно поиграться с сопротивлением резисторов для получения приемлемых для вас значений, не советуется снижать минимальное напряжение ниже 1 вольта.

Для отслеживания потребляемого нагрузкой тока установлен шунт. Для организации функции ограничения тока задействован второй усилитель ошибки в составе ШИМ контроллера тл494. Падение напряжения на шунте поступает на неинвертирующий вход второго усилителя ошибки, опять сравнивается с опорным, а дальше происходит точно тоже самое, что и в случае стабилизации напряжения. Указанным резистором можно регулировать выходной ток.

Токовый шунт изготовлен из двух параллельно соединённых низкоомных резисторов с сопротивлением 0,05Ом.

Накопительный дроссель намотан на желто белом кольце от фильтра групповой стабилизации компьютерного блока питания.

Так как схема планировалась на довольно большой входной ток, целесообразно использовать два сложенных вместе кольца. Обмотка дросселя содержит 20 витков намотанных двумя жилами провода диаметром 1,25мм в лаковой изоляции, индуктивность около 80-90 микрогенри.

Последние материалы раздела:

Несколько простых схем питания светодиодов Схема фонарика на одной батарейке
Несколько простых схем питания светодиодов Схема фонарика на одной батарейке

Если вы когда-нибудь захотите запитать светодиод от одной батарейки, то рано или поздно наткнетесь на схему под названием Joule Thief- вор...

Импульсный блок питания своими руками Плата управления импульсным блоком питания на tl494
Импульсный блок питания своими руками Плата управления импульсным блоком питания на tl494

[+] Дополнено файлами шкал и фотографиями. Схема и описание переделокРис. 1 В качестве ШИМ-регулятора управления D1 используется микросхема типа...

Новый символ и моби деньги
Новый символ и моби деньги

МОБИ.Деньги - это универсальная система электронных и мобильных платежей, ключевой игрок рынка мобильной и электронной коммерции. Официальный...