Управляем светодиодной лентой через Bluetooth. Управление RGB светодиодом с компьютера через USB порт (virtual COM port)

Всем доброго времени суток. Для начала скажу, что идея связать RGB LED Controller для ленты с умным пультом далеко не новая и родилась у меня достаточно давно. Но в этой публикации хотелось бы акцентировать внимание на простоте задумки и дешевизне её реализации. Как обычно предлагаю посмотреть вам видеоролик с моего канала о воплощение этой небольшой идеи в жизнь, а уже потом перейти к текстовой части обзор, там много того, о чём я не сказал в ролике. Несмотря на то, что ролик получился относительно коротким, для вашего удобства я написал по нему навигацию.

0:00 - 3:43 - Распаковка контроллеров и теория
3:44 - 6:15 - Подключение и переделка коннекторов
6:16 - 6:45 - Проверка работы
6:46 - 8:57 - Биндинг LED ленты на Xiaomi Remote 360
8:58 - 9:32 - Заключение и демонстрация

Контроллер для RGB LED ленты -

Контроллеры я купил на AliExpress по за каждый, умный пульт Xiaomi Remote 360 я приобрёл там же уже очень давно - его стоимость составляет примерно .

Учитывая, что таких контроллеров можно купить под любую LED ленту и запрограммировать на работу с Xiaomi Remote 360, при этом ИК каналы по цветам будут конфликтовать не очень часто, вполне спокойно можно отдать приоритет такому решению по сравнению с умной LED лентой Xiaomi Yeelight. Она конечно имеет собственный плагин и варьирование цветовых решений представлено в большем объёме, но её стоимость и длинна, выдвигают в приоритет всё же моё простое решение.


Умная LED лента Xiaomi Yeelight - или

При выборе контроллера для LED ленты сразу же решил отмести все контроллеры, которые имеют собственное софтовая обеспечение и работают по Bluetooth или Wi-Fi поскольку нам в данном случае интересная работа в рамках экосистемы умного дома Xiaomi.

Был у меня Wi-Fi контроллер, который раньше стоял на этой LED ленте. Он то ли конфликтовал с моим роутером, то ли из коробки был кривой и очень долго отвечал на сигналы сенсорного пульта, а в большинстве случаев вообще никак не реагировал, ловил непонятные Wi -Fi и включался самостоятельно. В интернете так ничего и не нашёл по его программированию и решению этой проблемы после чего расстался с ним, как раз-таки после этого пришла в голову идея реализовать подобного рода интеграцию.


Теперь перейдем непосредственно к самому контроллеру. Он представляет из себя небольшую плату с чипами, посредством которых осуществляется смешение цветов по типу RGB Сurves. Плата имеет выведенный приемник ИК сигнала, припаянный разъем для подключения питания, разводку на три цветовых канала и плюс. Всё это собрано в небольшой белый дешманский пластиковый корпус. Вникать в особенности платы я не собираюсь, просто потому что не обладаю особыми знаниями в микросхемах и умничать не буду, в конце концов нам интересна исключительно работа данного контроллера в рамках системы умного дома Xiaomi, а не его внутренности.




При подключение контроллера к ленте возникли небольшие проблемы в том, что я, к сожалению, не посмотрел на коннекторы подключения при покупке и они оказались одинаковыми, поэтому пришлось быстро поменять коннектор на контроллере на «папу», донором само собой явился старый контроллер. Можно было конечно скрутить провода на прямую, но мне было необходимо, чтобы контроллер в случае чего мог мобильно переместиться и управлять другой лентой. Для зачистки тонких контактов лучше использовать специальный стриппер, ну и ли поступить так, как я предложил и сделал на видео.


Стриппер для зачистки проводки -

Так же в обиходе при работе с тонкой проводкой LED лент лучше иметь термоусадочные трубки, коих у меня тоже не оказалось.


Термоусадочные трубки для изоляции проводки -

Пульты у подобного рода контроллеров практически все одинаковые отличием является наличие ключей или кнопок, которые позволяют делать выбор того или иного цвета, а также включать программы цветового варьирования. В моем случае это пульт на 44 ключа, большинство из которых запрограммированы. При этом поскольку контроллеры достаточно дешевые возможно повторение ИК сигналов на разных клавишах разных контролёров. То есть, например, ИК сигнал с пульта одного контроллера, отвечающего за включение красного цвета, может включать режим переливания цветов на другом контроллере и наоборот. Также они могут конфликтовать с пультом от телевизора.


Второй контроллер я подключил к LED ленте, которая подсвечивает рамки телевизора. Поскольку донорного коннектора на «папу» у меня не оказалось пришлось скручивать провода на прямую.


LED лента на телевизоре перекочевала со стола, так как многие светодиоды вышли из строя и не адекватно реагировали на команды контроллера. Ретушь рамок телевизора решила эту проблему и смотрится подсветка в таком расположении вполне годно. В дальнейшем планирую заменить её на остатки LED ленты расположенной нынче на столе.


Теперь связываем контроллер LED ленты с Xiaomi Remote 360 в дальнейшем эта связка позволит не просто удалённо управлять LED лентой со смартфона, но и задавать сценарии с использованием .

Для связки контроллера и умного пульта Xiaomi Remote 360 переходим в приложение mi home – add devises – плагин управления пультом.


Затем снизу выбираем самую первую иконку с двумя пультами наложенными друг на друга – это режим простого биндинга пульта, при котором каждую кнопку на пульте нужно программировать по отдельности.


Нажимаем на изображение самого первого пульта ➜ нажимаем плюс ➜ вводим название кнопки нажимаем далее.


после появится картинка, указывающая на необходимость нажать программируемую кнопку на пульте, повторяем операция и программируем все необходимые цвета ➜ после нажимаем на кнопку в верхнем правом углу, подтверждая создание нового пульта и кнопок, которые мы запрограммировали.

Из минусов можно отметить отсутствие анимации нажатия кнопки - своего рода анимированного тумблера, при наличии, которого можно было бы понимать какой прибор работает, а какой нет, включая его удалённо и не имея возможности визуально его наблюдать.

В общем вот такие нюансы с подсвечиванием различных объектов LED лентой в моей комнате. От себя могу сказать, что экспериментировать с подобного рода решениями мне нравиться. Контроллеры и LED ленты я однозначно рекомендую к приобретению для аналогичных и подобный этому решений. Ну, а теперь предлагаю посмотреть ряд фоток и оценить получившуюся эстетику.





Спасибо за просмотр, не забывайте подписываться на и комментировать ролики, там будет много нового и интересного контента.

Данный проект посвящен тому, как сделать светодиодную подсветку, управляемую с соседней комнаты, чтобы не вставать с дивана. Светодиодная RGB-подсветка одинаково хорошо украшает как маленький аквариум, так и большую комнату.

Можно засветить разными цветами баню от RGB ленты на Arduino. Создать, так сказать, баню на микропроцессорном управлении от Arduino.

Всего лишь понадобятся для сборки RGB-подсветки такие компоненты:

  1. Bluetooth модуль HC-05 для беспроводной связи с Arduino.
  2. Плата Arduino nano, mini, Uno с микропроцессором ATmega 8, ATmega 168, ATmega 328.
  3. Светодиодная лента RGB, при необходимости во влагозащитном исполнении IP65 или без него.
  4. Смартфон с Android как пульт управления RGB-подсветкой.
  5. Полевые MOSFET транзисторы, такие как P3055LD, P3055LDG, PHD3355L, но лучше с выводами для закрепления в монтажных отверстиях. Биполярные транзисторы работают хуже .
  6. Резисторы 10 кОм, 0.125 Вт - 3 штуки.

Немного теории про подключение RGB ленты к Arduino

Нельзя подключить светодиодную полоску напрямую к плате Arduino. Светодиодная лента светиться от 12 В, тогда как микропроцессору нужно для работы всего 5 В.

Но, самая главная проблема в том, что выходы микропроцессора не имеют достаточной мощности для питания целой ленты светодиодов. В среднем метровой длины светодиодная полоса потребляет 600 мА. Такой ток точно выведет из строя плату Arduino.

Используемые ШИМ выходы микропроцессора не имеют достаточной мощности, чтобы засветить RGB ленту, но всё-таки их можно использовать для снятия сигнала управления.

Для развязки по питанию, в качестве ключей, рекомендуется использовать транзисторы. Лучше использовать полевые MOSFET транзисторы: им для открытия нужен мизерный ток на «затвор», к тому же они имеют большую мощность в сравнении с биполярными ключами такого же размера.

RGB ленты к Arduino

На электромонтажной схеме на управление лентой задействованы ШИМ-выхода: 9 (красный), 10 (зеленый), 11 (голубой).

Три резистора по 10 кОм, 0.125 Вт повешены на «затвор» каждого транзистора.

Плюс от блока питания 12 В (красный провод) идет напрямую на RGB ленту.

Минус от блока питания 12 В (черный провод) распределяется по «истокам» полевых транзисторов.

«Сток» каждого транзистора связан с отдельным контактом ленты: R, G, B. Рекомендуется для удобства при подключении использовать провода красного, зеленого, голубого цвета.

Контакт заземления GND платы Arduino следует посадить на минус входного питания.

Сама плата Arduino Uno запитывается от отдельного сетевого адаптера. Для Arduino nano, mini потребуется собрать простенький источник питания на интегральном стабилизаторе 7805.

Подключение Bluetooth модуля HC-05:

  • VCC - 5V (питание +5 В);
  • GND - GND (земля, общий);
  • RX - TX на Arduino nano, mini, Uno;
  • TX - RX на Arduino nano, mini, Uno;
  • LED - не используется;
  • KEY - не используется.

Приведенный ниже эскиз программы является универсальным для управления как одним светодиодом, так и светодиодной полосой. Главное оставить нужные строчки, а ненужные удалить или сделать комментариями в косых черточках.

Unsigned long x; int LED = 9; // зеленый подключен к 9 пину int LED2 = 10; // синий подключен к 10 пину int LED3 = 11; // красный подключен к 11 пину int a,b,c = 0; void setup() { Serial.begin(9600); Serial.setTimeout(4); pinMode(LED, OUTPUT); pinMode(LED2, OUTPUT); pinMode(LED3, OUTPUT); } void loop() { if (Serial.available()) { x = Serial.parseInt(); if (x>=0 && x<=255) { a = x; // для RGB ленты //a = 255-x; // для светодиода analogWrite(LED, a); } if (x>=256 && x<=511) { b = x-256; // для RGB ленты //b = 511-x; // для светодиода analogWrite(LED2, b); } if (x>=512 && x<=767) { c = x-512; // для RGB ленты //c = 767-x; // для светодиода analogWrite(LED3, c); } /* Serial.println(x); Serial.println(a); Serial.println(b); Serial.println(c); */ } }

Если понадобиться подключить один RGB светодиод, тогда есть электромонтажная схема его подключения.

Установка приложения на телефон

Скачиваем приложение с коротким названием RGB на телефон. .

После установки запускаем приложение по иконке.

Кликаем по надписи

Находим в списке установленный Bluetooth модуль HC-05.

При наличии связи вместо надписи будет отображаться адрес и название установленного модуля Bluetooth.

Ну, вот и всё, управление RGB подсветкой налажено!

Вот видео-пример работы нашего проекта:

GPS часы на Arduino Биометрический замок – Схема и сборка ЖК дисплея

Разбираемся как подключить Bluetooth-модуль к Arduino, а затем использовать его для управления светодиодной RGB лентой.

В этом уроке мы будем использовать Bluetooth модуль HC-06, потому как он довольно дешевый и простой в использовании. Данный вариант был заказан за $2 на Aliexpress.

Для реализации проекта по управлению RGB лентой нам понадобятся такие детали:

  • Плата Arduino (мы будем использовать ) x 1
  • Модуль Bluetooth HC-06 или HC-05 x 1
  • 12V RGB LED лента (мы используем 30LEDs/m с общим анодом) x 1
  • Клеммный винт x 1
  • Резистор 220 Ом x 3
  • BUZ11 N-Channel Power MOSFET (или эквивалент) x 3
  • Макет и перемычки
  • DC джек и DC коннектор (опционально)
  • Питание 12 В (переменный источник питания)

Шаг 2. Соединения и схема

Схема не такая сложная, как может показаться на первый взгляд.

Во-первых, нам нужно определить, имеет ли наша светодиодная лента общий анод или общий катод. Наша имеет общий анод, поэтому мы подключили анод светодиодной полосы к блоку питания 12 В, а остальные - к винтовым клеммам, которые мы подключим к выходу MOSFET позже.

Все важные соединения и схема показана на рисунке выше.

Будьте очень осторожны при подключении 12V+ шины к VIN платы Arduino, потому что вы можете сжечь плату, если вы подключите ее не правильно. Кроме того, не забудьте всё заземлить (GND).

Наши подключения в итоге выглядят таким образом:

Шаг 3. Код Arduino и последовательная связь

Загрузите следующий эскиз в Arduino с помощью USB-кабеля.

const int redPin = 11; const int greenPin = 10; const int bluePin = 9; void setup() { Serial.begin(9600); pinMode(redPin, OUTPUT); pinMode(greenPin, OUTPUT); pinMode(bluePin, OUTPUT); } void loop() { while (Serial.available() > 0) { int red = Serial.parseInt(); int green = Serial.parseInt(); int blue = Serial.parseInt(); if (Serial.read() == "\n") { red = constrain(red, 0, 255); green = constrain(green, 0, 255); blue = constrain(blue, 0, 255); analogWrite(redPin, red); analogWrite(greenPin, green); analogWrite(bluePin, blue); } } }

Важно! Не забудьте отключить модуль HC-06 перед загрузкой эскиза!

Зачем? Штыри связи HC-06 (RX и TX) блокируют связь между Arduino и компьютером.

Объяснение кода

Во-первых, мы объявили несколько констант (константу, которые не могут быть изменены позже) для всех трех цветов (красный, зеленый, синий)

В setup() мы начали последовательную соединение с частотой 9600 бод и установили все выводы ленты на OUTPUT.

В цикле loop() , если Serial получает что-то, он анализирует полученные данные как Integer (важно на следующем шаге)

Если он получает символ новой строки ("\ n"), он сначала ограничивает значения диапазоном 0-255 из-за диапазона PWM (ШИМ, англ. pulse-width modulation (PWM )), а затем совершает изменения в цифровых выводах с помощью метода analogWrite() .

Шаг 4. Подключаем Arduino к Android-устройству

Нам нужно скачать приложение "Smart Bluetooth - Arduino Bluetooth Serial".

Smart Bluetooth - это приложение, которое позволяет использовать телефон для общения с модулем Bluetooth или платой, самым простым способом. Оно дает неограниченные возможности при управлении проектами. Smart Bluetooth предлагает множество способов передачи данных в ваш модуль.

Smart Bluetooth имеет следующие функции :

  • Быстрое подключение к модулю,
  • Отправлять и получать данные из вашего модуля,
  • Управление цифровыми и PWM-контактами приемника,
  • Темная и светлая тема,
  • Различные модели управления для разных целей,
  • Современный и отзывчивый интерфейс,
  • Настраиваемые кнопки и переключатели,
  • Реализуйте свой проект RC-машин с красивым геймпадом,
  • Легкое управление RGB-лентами через слайдер,
  • Автоматически отключает Bluetooth при закрытии для экономии батареи,
  • Командная строка (терминал).

В этом уроке мы используем вторую вкладку (TAB). В целом процесс выглядит так:

  1. Откройте приложение, нажмите кнопку SEARCH и найдите соседние устройства.
  2. Когда ваше устройство найдено, выберите его, щелкнув по нему.
  3. Выберите предпочтительную тему (темный или светлый) и удерживайте выбранную вами кнопку.
  4. Дождитесь соединения, если не работает, попробуйте переподключиться.
  5. После успешного соединения выберите вторую вкладку (TAB), щелкнув по ней, перетащите ползунки и проверьте, не изменила ли светодиодная полоса цвет.

Шаг 5. Результат

На этом наше знакомство с подключением RGB-ленты и управлению ей через Arduino заканчивается. В следующих уроках мы постараемся усложнить проект.

Управление RGB светодиодом с компьютера через USB порт (virtual COM port). Управление светодиодной лентой с компьютера

Управление светодиодной RGB лентой через arduino

В число осветительных приборов давно вошли многоцветные светодиодные ленты RGB. Для управления этими устройствами используется RGB-контроллер. Но, кроме него, в последние годы применяется плата Arduino.

Ардуино – принцип действия

плата Arduino

Плата Ардуино – это устройство, на котором установлен программируемый микроконтроллер. К нему подключены различные датчики, органы управления или encoder и, по заданному скетчу (программе), плата управляет моторами, светодиодами и прочими исполнительными механизмами, в том числе и другими платами Ардуино по протоколу SPI. Контроль устройства может осуществляться через дистанционный пульт, модуль Bluetooth, HC-06, Wi-Fi, ESP или internet, и кнопками. Одни из самых популярных плат – Arduino Nano и Arduino Uno, а также Arduino Pro Mini – устройство на базе микроконтроллера ATmega 328

Внешний вид Arduino Pro MiniВнешний вид Arduino UnoВнешний вид Arduino micro

Программирование осуществляется в среде Ардуино с открытым исходным кодом, установленным на обычном компьютере. Программы загружаются через USB.

Но выходы рассчитаны на ток 20 – 40 мА с напряжением 5 В. Этого хватит для питания индикаторного RGB-светодиода или матричного светодиодного модуля 32×32 мм. Для более мощной нагрузки это недостаточно.

Для решения подобной проблемы во многих проектах нужно подключить дополнительные устройства:

  • Реле. Кроме отдельных реле с напряжением питания 5В есть целые сборки с разным количеством контактов, а также со встроенными пускателями.
  • Усилители на биполярных транзисторах. Мощность таких устройств ограничена током управления, но можно собрать схему из нескольких элементов или использовать транзисторную сборку.
  • Полевые или MOSFET-транзисторы. Они могут управлять нагрузкой с токами в несколько ампер и напряжением до 40 – 50 В. При подключении мосфета к ШИМ и электродвигателю или к другой индуктивной нагрузке, нужен защитный диод. При подключении к светодиодам или LED-лампам в этом нет необходимости.
  • Платы расширения.
к содержанию

Подключение светодиодной ленты к Ардуино


подключение светодиодной ленты к Arduino

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Arduino Nano могут управлять не только электродвигателями. Они используются также для светодиодных лент. Но так как выходные ток и напряжение платы недостаточны для прямого подключения к ней полосы со светодиодами, то между контроллером и светодиодной лентой необходимо устанавливать дополнительные приспособления.

Через реле

Подключение через реле

Реле подключается к устройству на цифровой выход. Полоса, управляемая с его помощью имеет только два состояния - включенная и выключенная. Для управления red-blue-green ленточкой необходимы три реле. Ток, который может контролировать такое устройство, ограничен мощностью катушки (маломощная катушка не в состоянии замыкать большие контакты). Для подсоединения большей мощности используются релейные сборки.


Подключение с помощью транзистора

Для усиления выходного тока и напряжения можно использовать биполярный транзистор. Он выбирается по току и напряжению нагрузки. Ток управления не должен быть выше 20 мА, поэтому подается через токоограничивающее сопротивление 1 – 10 кОм.

Транзистор лучше применять n-p-n с общим эмиттером. Для большего коэффициента усиления используется схема с несколькими элементами или транзисторная сборка (микросхема-усилитель).

Кроме биполярных, для управления полосами используются полевые транзисторы. Другое название этих приборов – МОП или MOSFET-transistor.

Такой элемент, в отличие от биполярного, управляется не током, а напряжением на затворе. Это позволяет малому току затвора управлять большими токами нагрузки – до десятков ампер.

Подключается элемент через токоограничивающее сопротивление. Кроме того, он чувствителен к помехам, поэтому выход контроллера следует соединить с массой резистором в 10 кОм.

С помощью плат расширения


Подключение Arduino с помощью плат расширения

Кроме реле и транзисторов используются готовые блоки и платы расширения.

Это может быть Wi-Fi или Bluetooth, драйвер управления электродвигателем, например, модуль L298N или эквалайзер. Они предназначены для управления нагрузками разной мощности и напряжения. Такие устройства бывают одноканальными – могут управлять только монохромной лентой, и многоканальными – предназначены для устройств RGB и RGBW, а также лент со светодиодами WS 2812.

К содержанию

Пример программы


Arduino и светодиодная лента

Платы Ардуино способны управлять светодиодными конструкциями по заранее заданным программам. Их библиотеки можно скачать с официально сайта, найти в интернете или написать новый sketch (code) самому. Собрать такое устройство можно своими руками.

Вот некоторые варианты использования подобных систем:

  • Управление освещением. С помощью датчика освещения включается свет в комнате как сразу, так и с постепенным нарастанием яркости по мере захода солнца. Включение может также производиться через wi-fi, с интеграцией в систему «умный дом» или соединением по телефону.
  • Включение света на лестнице или в длинном коридоре. Очень красиво смотрится диодная подсветка каждой ступеньки в отдельность. При подключении к плате датчика движения, его срабатывание вызовет последовательное, с задержкой времени включение подсветки ступеней или коридора, а отключение этого элемента приведет к обратному процессу.
  • Цветомузыка. Подав на аналоговые входы звуковой сигнал через фильтры, на выходе получится цветомузыкальная установка.
  • Моддинг компьютера. С помощью соответствующих датчиков и программ цвет светодиодов может зависеть от температуры или загрузки процессора или оперативной памяти. Работает такое устройство по протоколу dmx 512.
  • Управление скоростью бегущих огней при помощи энкодера. Подобные установки собираются на микросхемах WS 2811, WS 2812 и WS 2812B.
к содержанию

Видеоинструкция

lampaexpert.ru

Схема подключения и управление светодиодной лентой с помощью Arduino

Arduino - компьютерная платформа, используемая при построении простых систем автоматики, небольшая плата со встроенным микропроцессором и оперативной памятью. Управление светодиодной лентой через Arduino - один из способов ее применения.

Процессор ATmega управляет программой-скетчем, контролируя многочисленные дискретные выводы, аналоговые и цифровые входы/выходы, ШИМ-контроллеры.

Принцип действия Arduino

«Сердце» платы Arduino - микроконтроллер, к которому подключаются датчики, управляющие элементы. Заданная программа (называется «скетч») позволяет управлять электродвигателями, светодиодами в лентах и других осветительных приборах, даже используется для контроля над другой платой Arduino через протокол SPI. Контроль осуществляется при помощи пульта ДУ, Bluetooth-модуля или сети Wi-Fi.

Для программирования используется открытый исходный код на ПК. Для загрузки программ управления можно пользоваться USB-коннектором.

Принцип управления нагрузкой через Arduino

На плате Arduino есть порты двух типов - цифровые и аналоговые. Первый имеет два состояния - «0» и «1» (логические ноль и единица). При подключении светодиода к плате в одном состоянии он будет светиться, в другом - нет.

Аналоговый вход, по сути, - ШИМ-контроллер, регистрирующий сигналы частотой около 500 Гц. Такие сигналы подаются на контроллер с настраиваемой скважностью. Аналоговый вход позволяет не просто включать или отключать управляемый элемент, но и изменять значение тока (напряжения).

При прямом подключении через порт используйте слабые светодиоды, добавляя к ним ограничительный резистор. Более мощная нагрузка выведет его из строя. Для организации управления светодиодной лентой и другим осветительным прибором примените электронный ключ (транзистор).

Подключение к Arduino

Прямое подключение светодиодной ленты к Arduino уместно только в случае применения слабых LED-диодов. Для светодиодной ленты между ней и платой необходимо установить дополнительные электротехнические элементы.

Через реле

Подключите реле к плате Arduino через цифровой выход. Управляемая полоса может иметь одно из двух состояний - включения или выключения. Если нужно организовать управление RGB-лентой, понадобятся три реле.

Значение тока, контролируемое данным устройством, ограничивается мощностью катушки. Если мощность слишком мала, элемент не сможет замыкать большие контакты. Для наиболее высоких мощностей примените релейные сборки.

С помощью биполярного транзистора

Если нужно повысить ток или напряжение на выходе, подключите биполярный транзистор. При его выборе ориентируйтесь на ток нагрузки. Ток управления не превышает 20 мА, поэтому добавьте резистор на 1 – 10 кОм для ограничения тока за счет сопротивления.

Обратите внимание! В идеале нужно пользоваться транзистором n-p-n типа на базе общего эмиттера. Если требуется большое усиление, примените транзисторную сборку.

С помощью полевого транзистора

Вместо биполярных транзисторов для управления светодиодными лентами возьмите полевые (сокращенно - МОП). Разница между ними связана с принципом управления: биполярные изменяют ток, полевые - напряжение на затворе. Благодаря этому небольшой ток затвора управляет большой нагрузкой (десятками ампер).

Обязательно добавьте к схеме резистор для ограничения тока. Из-за высокой чувствительности к помехам к выходу контроллера подключается масса резистора на 10 кОм.

С помощью плат расширения

Если нет желания использовать реле и транзисторы, можно купить целые блоки - платы расширения. К ним относятся Wi-Fi, Bluetooth, эквалайзер, драйвер и т. д., которые необходимы для управления нагрузкой разных мощностей и напряжений. Это могут быть как одноканальные элементы, которые подойдут монохромным лентам, так и многоканальные (для управления цветными RGB-лентами).

Различные программы

Библиотеки с программами для платы Arduino можно загрузить с официального сайта или найти в Интернете на других информационных ресурсах. Если есть навыки, можете даже самостоятельно написать скетч-программу (исходный код). Для сбора электрической цепи не требуется каких-то специфичных знаний.

Варианты применения системы под управлением Arduino:

  1. Освещение. Наличие датчика позволит задать программу, в соответствии с которой свет в комнате либо появляется сразу, либо плавно включается параллельно заходу солнца (с увеличением яркости). Для включения можно использовать Wi-Fi, телефон и интеграцию в систему «Умный дом».
  2. Освещение коридора и лестничных площадок. Arduino позволит организовать освещение каждой детали (к примеру, ступени) отдельно. Добавьте в плату датчик движения, чтобы адресные светодиоды загорались последовательно в зависимости от того места, где зафиксировано движение объекта. Если движения нет, диоды будут гаснуть.
  3. Светомузыка. Воспользуйтесь фильтрами и подайте на аналоговый вход звуковые сигналы, чтобы на выходе организовать светомузыку (эквалайзер).
  4. Модернизация компьютера. Некоторые датчики позволят создать зависимость цвета светодиодов от температуры процессора, его загрузки, нагрузки на оперативную память. Используется протокол DMX 512.

Микросхемы Arduino расширяют возможности применения монохромных и многоканальных (RGB) светодиодных лент. Помимо слияния различных цветов, образования сотен тысяч оттенков сможете создать неповторимые эффекты - затухание при заходе солнца, периодическое включение/выключение при фиксации движения и многое другое.

Управление светодиодной лентой через Arduino - схемы плавного включения и выключения освещения

220.guru

Управление RGB светодиодом с компьютера через USB порт

Управление RGB светодиодом с компьютера

// Для управления цветом светодиода используем 3 ШИМ порта

int bluePin = 9;

int greenPin = 10;

int redPin = 11;

// Команды управления светодиодом. Цвета и выключение

String COLOR_RED = "red";

String COLOR_BLUE = "blue";

String COLOR_GREEN = "green";

String COLOR_OFF = "off";

// Инициализация последовательного порта. Устанавливаем скорость 9600 бит/c

Serial.begin(9600);

// Инициализируем выходы для нашего RGB светодиода

pinMode(redPin, OUTPUT);

pinMode(greenPin, OUTPUT);

pinMode(bluePin, OUTPUT);

// В переменную color считываем команду с цветом от ПК

// Проверяем, доступны ли данные с ПК

int check = Serial.available();

// если есть, то считываем как строку

if (check > 0) {

color = Serial.readString();

// Сравниваем поступившую команду с описанными ранее и включаем необходимый цвет на RGB LED

if (COLOR_RED.equalsIgnoreCase(color)) {

setColor(255, 0, 0);

} else if (COLOR_GREEN.equalsIgnoreCase(color)) {

setColor(0, 255, 0);

} else if (COLOR_BLUE.equalsIgnoreCase(color)) {

setColor(0, 0, 255);

} else if (COLOR_OFF.equalsIgnoreCase(color)) {

setColor(0, 0, 0);

} else if(check > 0){

// Если команда не распознана, сообщаем пользователю подсказку.

Serial.println("Send command is bad! Send please \"RED\" \"GREEN\" \"BLUE\" or \"OFF\"!");

// Функция включения необходимого цвета на нашем RGB светодиоде

void setColor(int red, int green, int blue) {

analogWrite(redPin, red);

analogWrite(greenPin, green);

analogWrite(bluePin, blue);

gearise.ru

Управление светодиодными источниками света по протоколам SPI и DMX

Эта статья посвящена особому классу управляемых светодиодных источников света, к которому относятся пиксельные светодиодные ленты «Бегущий огонь», управляемый «гибкий неон» и флеш-модули. В них, как и в обычных многоцветных RGB лентах и модулях, используются трехцветные светодиоды с красным (Red), зеленым (Green) и синим (Blue) цветом свечения.

Принципиальное отличие заключается в том, что помимо светодиодов, непосредственно на ленту или внутрь модулей, устанавливаются микросхемы управления. Благодаря этому, появляется возможность управлять не всеми светодиодами одновременно, а каждым светодиодом или группой из нескольких светодиодов отдельно. Такая группа называется пиксель. Количество светодиодов в пикселе зависит от типа ленты. Светодиодные ленты и модули с напряжением питания 12В обычно имеют по 3 RGB светодиода в одном пикселе, с питанием 24В – по 6 светодиодов на пиксель. В светодиодных лентах и модулях с напряжением питания 5В, управление обычно осуществляется каждым светодиодом отдельно, причем микросхема управления может быть встроена в корпус самого RGB светодиода.

Большинство контроллеров позволяют устанавливать длину подключенной ленты и выбирать последовательность RGB каналов на ленте (RGB, RBG, BGR и т.д.). Это необходимо чтобы цвет, заданный в программе, соответствовал воспроизводимому цвету, красный цвет был красным, зеленый – зеленым и синий - синим.

Цифровой сигнал, сформированный пиксельным контроллером, поступает на микросхему, установленную на ленте или во флеш- модуле, и представляющую собой специализированный микроконтроллер, который принимает цифровой сигнал, декодирует его и управляет яркостью и цветом свечения светодиодов. Часто эти микроконтроллеры называют «чип» или «драйвер». В данной статье, для однозначного понимания, будем называть их «драйвер».

Тип используемых драйверов обязательно указывается в параметрах светодиодных лент или флеш-модулей. Знать этот тип необходимо для того, чтобы подобрать и правильно настроить контроллер, который будет управлять лентой или модулями.

Большинство контроллеров могут работать с несколькими типами драйверов. Перечень драйверов, с которыми работает тот или иной контроллер, приводится в его технических характеристиках, а также в программном обеспечении к контроллеру, если таковое используется для создания собственных световых программ. Поскольку ведется постоянная работа по совершенствованию программного обеспечения и контроллеров, списки совместимых драйверов периодически пополняются.

Применяемые драйверы разделяются на два принципиально разных класса. В соответствии с этим на два класса можно разделить и светодиодных ленты, флеш-модули и «гибкий неон».

  • Первый класс (более обширный и чаще используемый) - это драйверы использующие цифровой интерфейс SPI (Serial Peripheral Interface - последовательный периферийный интерфейс),
  • Второй – драйверы, использующие цифровой протокол управления DMX (Digital Multiplex – цифровое мультикплексирование).

Оба класса драйверов имеют свои преимущества, о которых расскажем далее. Рассмотрим более подробно оба типа используемых протоколов.

Использование протокола SPI.

Особенностью светодиодных лент и модулей, использующих протокол управления SPI, является последовательная передача данных от пикселя к пикселю по всей длине подключенной цепочки. Цифровая управляющая последовательность формируется контроллером и подается на первый пиксель. Драйвер этого пикселя «забирает» первую принятую информации себе, а оставшуюся цифровую последовательность передает на следующий пиксель. Второй драйвер также «отрезает» себе начальную часть информации и передает оставшееся на третью микросхему, и т.д. При таком способе передачи нет необходимости присваивать микросхемам адреса. Адресом, по сути, является место расположения пикселя в общей последовательности.

Управление по протоколу SPI может осуществляться с использованием двух сигнальных проводов (DATA и CLK) или только одного (DATA). Для лент и модулей с двумя сигналами управления характерна более стабильная работа на высоких скоростях обмена и, соответственно меньшая задержка распространения информации и более высокая частота обновления. Сколько проводов управления используется в конкретном случае, зависит от типа драйверов на светодиодной ленте или в модулях. Ниже приведена таблица с основными параметрами SPI драйверов, используемых в оборудовании Neoncolor.

Тип драйвера ТМ1804 ТМ1812 WS2801 WS2811 WS2812 LPD6803 UCS1903 TLS3001
Использование в оборудовании Ленты/ модули Ленты Модули Ленты/ модули Ленты/ модули Модули Модули Модули
Напряжение питания лент и модулей 12/24В 12В 5/12В 5/12/24В 5/12/24В 5/12В
Количество RGB светодиодов в пикселе для лент 1 или 3 шт. 1, 2 или 3 шт. - 3 шт. 1 шт. - - -
Сигналы управления DATA DATA DATA, CLK DATA DATA DATA, CLK DATA DATA
Исполнение микросхемы В отдельном корпусе В отдельном корпусе В отдельном корпусе В отдельном корпусе Встроена в светодиод В отдельном корпусе В отдельном корпусе В отдельном корпусе
Количество обслуживаемых драйвером пикселей 1 (3 канала) 4 (12 каналов) 1 (3 канала) 1 (3 канала) 1 (3 канала) 1 (3 канала) 1 (3 канала) 1 (3 канала)
Количество цветов 16 млн 16 млн 16 млн 16 млн 16 млн 32768 16 млн 4096

С появление новых драйверов, список используемых микросхем пополняется.

Ниже приведены структурные схемы SPI лент и их подключение к контроллеру.

Рис.1. Структурная схема SPI светодиодной ленты с двумя линиями управления (DATA и CLK)

Рис.2. Структурная схема SPI светодиодной ленты с одной линией управления (DATA)

Использование протокола DMX.

Отличительные особенности светодиодных лент и флеш-модулей, использующих DMX управление – параллельная подача сигнала управления на все модули. Как видно на структурной схеме, приведенной на рис.3., цифровой сигнал с выхода контроллера подается одновременно на все драйверы.

Рис.3. Структурная схема DMX светодиодной ленты (сигнал ADR используется только при записи адресов DMX каналов)

В такой системе выход из строя одного драйвера не вызывает отказ всех последующих пикселей. Правда, чтобы информация попала именно в тот драйвер, которому она предназначена, драйверы должны иметь свой персональный адрес. Если драйверы в последовательной цепочке поменять местами, поменяются и пикселы в программе, в результате световой эффект будет нарушен.

В оборудовании компании Neoncolor используются современные DMX драйверы WS2821. Справедливости ради, стоит отметить, что эти драйверы используют протокол DMX, но не используют полноценный симметричный интерфейс, характерный для работы систем стандарта DMX. Для передачи сигнала используется сигнал DATA+ и не используется DATA-.

DMX ленты, модули и «гибкий неон» поставляются с записанными при производстве DMX адресами. По умолчанию, адресация пикселей каждой катушки ленты (цепочки модулей или катушки «гибкого неона») начинается с 1-го адреса и нумеруется по порядку до последнего пикселя. Если в одну линию соединяется несколько катушек или отрезков, требуется произвести запись адресов заново. Для этого вначале выполняются все соединения отрезков ленты или модулей, а затем производится запись адресов. При этом адреса автоматически последовательно записываются во все подключенные пиксели, начиная от ближайшего к контроллеру. Такая запись исключает дублирование адресов и обеспечивает правильное выполнение световых эффектов.

Для записи адресов в DMX драйверы используются специализированные редакторы адресов, например, DMX-WS2821. Некоторые пиксельные контроллеры, такие как DMX K-1000D или DMX K-8000D, имеют встроенный редактор адресов.

При записи адресов используется провод, обозначенный ADR (ADI, ADIN). После выполнения записи, при воспроизведении световых программ, вход ADI драйверов не используется. Если Ваш контроллер не имеет встроенного редактора адресов и не имеет выхода для подключения провода ADI, этот провод должен быть соединен с общим проводом GND, что предотвратит воздействие на него внешних помех и наводок.

Подводя итог сравнению цифровых интерфейсов SPI и DMX, используемых при управлении светодиодными пикселями, приведем положительные стороны обоих.

Плюсы светодиодных лент и модулей, использующих интерфейс SPI:

  • нет необходимости записывать адрес и, соответственно, приобретать редактор адресов;
  • нет привязки пиксела к месту установки в общей цепи, т.е. перестановка модулей или отрезков ленты не приводит к нарушению рисунка воспроизводимой программы;
  • возможность подключения на одну линию более 1024 пикселей, при условии поддержки такого количества контроллером и при продуманном и качественно выполненном монтаже.

Плюсы светодиодных лент, модулей и «гибкого неона», использующих интерфейс DMX:

  • совместимость с оборудованием, использующим стандартный протокол управления DMX512, например, DMX пульты или оборудование системы MADRIX.
  • при отказе одного пикселя, все последующие пиксели продолжают работать, картинка не искажается.

При управлении от оборудования, работающего по стандартному протоколу DMX512 , на одну DMX шину может быть подключено максимум 170 пикселей (170 пикселей по 3 адреса, итого 510 адресов). При использовании специализированных пиксельных контроллеров для светодиодных лент и флеш-модулей, это количество зависит от типа самого контроллера и обычно составляет 1024 пикселя на один порт.

В заключении статьи приведем схему подключения нескольких светодиодных лент «Бегущий огонь» (Рис.4.) и дадим несколько рекомендаций, которые помогу правильно спроектировать и смонтировать систему.

Рис.4. Соединение нескольких светодиодных лент.

  • При подключении пикселей соблюдайте направление передачи данных, обозначенное стрелками, нанесенными на ленте или флеш-модулях. Стрелки должны указывать в направлении от контроллера. Также, можно ориентироваться на маркировку, нанесенную на ленту или модули. Контакты с маркировкой DI или DIN – вход, подключаются к выходу контроллера, контакты с маркировкой DO или DOUT – выход, подключаются к следующим пикселям.
  • Никогда не подавайте на ленту напряжение, превышающее номинальное напряжение питания, например, подключение ленты с напряжением питания 5В к источнику питания с выходным напряжением 12В неминуемо приводит к выходу ленты из строя.
  • Будьте внимательны при подключении. Подача напряжения питания на вход данных или ошибка с полярностью подключения выводов питания («плюс» и «минус» источника питания) может привести к выходу ленты из строя.
  • Не подключайте последовательно питание двух и более лент (5 или 2.5 м, в зависимости от типа лент). Лента и «гибкий неон» поставляются на катушках и всегда имеют максимально допустимую длину. При соединении последовательно нескольких лент, провода DATA и GND подключаются с выхода одной ленты ко входу другой, а питание подается на каждую ленту отдельно. Если для питания нескольких лент используется один мощный источник питания, от него к каждой ленте необходимо провести отдельный кабель. При этом следует учитывать, что ток потребления ленты может достигать больших значений и это приводит к падению напряжения на питающих проводах. Помимо изменения цвета свечения, такое падение может вызывать сбои в управлении пикселями. Сечение питающего кабеля рассчитывается так же, как и для стандартных светодиодных лент, исходя из потребляемой мощности ленты и длины кабеля. Для расчета можно воспользоваться калькулятором сечения провода на нашем сайте. Часто, вместо одного мощного источника питания, бывает удобнее использовать отдельные блоки небольшой мощности для каждой ленты, разместив их в непосредственной близости к ленте. При таком подключении проблем, вызываемых падением напряжения, не возникает.
  • При использовании лент высокой плотности и с низким напряжением питания (5 вольт), подавайте питание на ленту с обоих концов. На таких лентах, из-за большого потребляемого тока и падения напряжения на дорожках ленты, цвет свечения светодиодов в начале и конце ленты может отличаться. Из-за недостатка напряжения питания на конце ленты могут появиться сбои управления светодиодами. Эти эффект особенно выражены при включении статического белого цвета на всех светодиодах. В таком режиме потребляемый лентой ток максимальный. На некоторых контроллера, для устранения подобного эффекта, автоматически снижается яркость свечения на белом цвете при питании контроллера напряжением 5 вольт.
  • Напряжение на управляющих линиях DATA и CLK не зависит от типа контроллера и его напряжения питания. На всех контроллерах оно может принимать только два значения – 0 или 5 вольт (уровни TTL). Из этого следует, что не обязательно питать контроллер и ленту от источников питания с одинаковым выходным напряжением. Например, можно использовать ленту с питанием 5 вольт и контролер с напряжением питания 12 вольт. Главное, чтобы выходное напряжение блока питания ленты соответствовало подключаемой ленте, а выходное напряжения блока питания контроллера соответствовало подключаемому контроллеру. Если напряжения питания контроллера и ленты одинаковые, можно использовать один общий источник питания.
  • Для передачи сигналов управления от контроллера к ленте используйте экранированный кабель. Возможно применение кабеля для компьютерных сетей UTP (витая пара). Длина кабеля управления между контроллером и лентой не должна превышать 10 м. При необходимости передать сигнал управления на большее расстояние (до 200м), используйте конверторы сигнала TTL в RS485 со стороны контроллера RS485 в TTL со стороны ленты. Для передачи и приема сигнала по кабелю можно использовать конвертер Th3010-485.
  • При количестве пикселей в системе более 1024, используйте контроллеры с несколькими выходными портами. Равномерно распределяйте пиксели между портами контроллера.

www.neoncolor.ru

Подключение светодиодных rgb-лент к контроллеру и управление lead подсветкой пультом

Самыми современными осветительными приборами являются светодиоды: светодиодные лампы, прожектора или модули. Хотя есть конструкции, в которых элементы соединены в полосу, – это светодиодные ленты. Они производятся различной яркости и цвета, есть и многоцветные ленты RGB (R – red «красный», G – green, «зелёный», B – blue, «синий»), позволяющие менять цвет ленты при помощи RGB-контроллера.


Применение многоцветной ленты

RGB лента, благодаря возможности менять цвет и яркость, используется во многих местах и дизайнерских решениях:

  • Основное или вспомогательное освещение комнаты. В сочетании с центральной люстрой делает освещённость более равномерной, а самостоятельно создает романтическое освещение или в сочетании с пультом с соответствующими возможностями обеспечивают цветомузыкальные эффекты;
  • В спальне, коридоре и на кухне обеспечивает дежурное и полное освещение. Переключать режимы можно вручную, по таймеру или датчиком движения;
  • Подсветка витрины магазина. Оттенок света выбирается по желанию оформителя;
  • Моддинг компьютера. Цвет может зависеть от температуры или загрузки процессора;
  • Фитолампа. Это удобный, но невыгодный вариант – используются только два цвета: красный и синий.

Конструкция led-ленты RGB

Светодиодная лента – это гибкая полоса, на которой расположены две, а на led-лентах RGB – четыре токопроводящие полоски. Между этими полосками расположены группами три последовательно включённых светодиода и токоограничивающее сопротивление. Элементы схемы используются формы SMD – surface mounted device (прибор, монтируемый на поверхность). Отличаются такие конструкции по размеру светодиодов, выраженному в 0,1 мм.

В многоцветных led-лентах устанавливаются элементы SMD5050 или 5*5мм. В отличие от светодиодов меньшего размера, в них три светодиода в одном корпусе. В монохромных конструкциях эти элементы включены параллельно, а в RGB-конструкциях каждый вывод подключается к своей токопроводящей полоске и имеет свой цвет свечения. Исключение составляют устройства, в которых в каждом элементе установлен ШИМ-контроллер. В таких аппаратах всего две токопроводящие полоски. Управление осуществляется при помощи цифрового сигнала.

Кроме обычных RGB-лент есть устройства RGBW. В них, кроме многоцветных, есть белые светодиоды. С их помощью достигается повышенная яркость и большее количество оттеков света.

Управление цветом

В многоцветных полосах управление яркостью каждого цвета осуществляется по отдельности. Этим достигается большое количество оттенков. При включении всех светодиодов на полную мощность лента начинает светиться белым цветом.

Для управления применяется RGB контроллер. Он может оснащаться пультом управления разного типа:

  • Встроенный или выносной на проводах. Применяется там, где не требуется постоянная регулировка цвета, например, в витринах магазинов;
  • С ИК-пультом. Самые простые и недорогие. Недостаток в том, что такой пульт работает только в пределах прямой видимости;
  • С радиопультом. Позволяет управлять светом даже из соседней комнаты, но при утере пульта приходится менять устройство;
  • С Wi-Fi и Bluetooth. Позволяет управлять при помощи мобильного телефона. Могут использоваться в системе «умный дом».

Кроме регулировки цвета всей ленты одновременно, есть устройства, в которых каждый светодиод оснащён ШИМ-контроллером, регулирующим цвет своего светодиода. В таких конструкциях возможны различные цветосветовые эффекты: переливы цвета, бегущие огни, звёздный дождь и другие.


RGB контроллер

Управление led-лентой при помощи Ардуино

Один из способов управления многоцветными светодиодными устройствами – это платы Ардуино. В таких платах установлен программируемый микроконтроллер, к которому подключаются различные датчики и выходные устройства. По заданной программе такие устройства управляют цветом и яркостью свечения светодиодов. Они оснащаются аналоговыми выходами для управления обычной ргб-лентой, и цифровыми – для ленты с ШИМ-контоллерами.

Питание ленты RGB

Самое распространённое напряжение питания =12В, но встречаются полосы на 24, 110 и 220В. Они отличаются количеством соединённых последовательно светодиодов в группе.

Перед тем, как подключить rgb-ленту, нужно определить необходимую мощность блока питания, учитывая 20% запас. Питание таких устройств осуществляется от блоков питания разной мощности:

  • До 25Вт (2А). Такие устройства похожи на блок питания планшета или мобильного телефона, включаются в розетку;
  • До 100Вт (9А). Это приборы в пластиковом корпусе. Их можно спрятать в шкафу или в нише, в гипсокартонной стене;
  • Свыше 100Вт. Это аппараты в металлическом корпусе со встроенными кулерами. При установке необходимо предусмотреть доступ воздуха. При работе шумят, поэтому в доме целесообразнее вместо одного мощного устройства использовать несколько маломощных.

Сечение проводов для подключения светодиодных лент

При подключении таких приборов блок питания необходимо располагать рядом с лентой. Это связано с падением напряжения в подсоединяемых проводах.

Например, для подключения 5 метров ленты RGB SMD5050, напряжением 12В, мощностью 14,4Вт/метр, общей мощностью 72Вт и током, по формуле I=P/U=72Вт/12В=6А достаточно сечения провода 0,5 мм². Но при длине провода 10 метров падение напряжения составит 4В, поэтому необходимо выбрать сечение не менее 4 мм².

Информация. Для подключения устройств, находящихся на расстоянии друг от друга, используются отдельные блоки питания и RGB-повторители.

Подключать ленты последовательно допускается не более 5 метров. При большей длине растёт падение напряжения на токоведущих полосках, снижение яркости к концу, а также их нагрев. Это приведёт к выходу устройства из строя.


Подключение ленты RGB

Подключение проводов

Для подключения на токопроводящих полосках есть контактные площадки – расширения, к которым производится подключение проводов. Они присоединяются двумя способами: пайкой или коннекторами.

Пайка проводов

Для подключения полосы при помощи пайки необходимы гибкие многожильные провода сечением не более 0,5 мм². Провода большего сечения могут оборвать контактные площадки.

Флюс используется только нейтральный. Порядок действий следующий:

  1. если лента покрыта слоем силикона, нужно снять его, не повреждая токопроводящий слой;
  2. паяльником мощностью не больше 15Вт залудить контактные площадки;
  3. отрезать куски проводов необходимого размера;
  4. снять изоляцию с провода на 5 мм и залудить его;
  5. отрезать кусок термоусадочной трубки длиной 25 мм и надеть её на ленту;
  6. припаять провода;
  7. надеть термоусадочную трубку на место пайки и прогреть строительным феном или зажигалкой.

Внимание! Кислоту использовать нельзя – она может разрушить токопроводящие полоски или вызвать короткое замыкание.

Соединение коннекторами

Кроме пайки, подключение производится при помощи специальных коннекторов. Это менее надёжный, но более простой и быстрый способ. Кроме того, при подключении или ремонте ленты, установленной в труднодоступном месте, это единственный способ.

Коннекторы производятся разной формы: прямые, угловые, Т-образные, с проводами, для подключения к сети и без, для соединения отрезков полосы между собой.


Коннектор RGB

Ремонт ленты

При выходе из строя отдельных участков полосы нет необходимости менять всю ленту целиком – достаточно заменить повреждённый участок. Это делается при помощи коротких, 10-15 мм, кусочков проводов или соединительными коннекторами.

Степень водозащищенности

Ленты производятся с разной степенью защиты от неблагоприятных воздействий окружающей среды:

  • IP20/IP33. Это открытые полосы. Применяются в сухих местах, в которых исключено попадание брызг воды. Это подсветка подвесного потолка, компьютерной клавиатуры или замена настольной лампы;
  • IP65. Покрыты силиконом только с лицевой стороны. Используются для подсветки плинтусов, рабочей зоны на кухне и других местах, в которых возможны брызги, но исключено попадание струй воды;
  • IP67/IP68. Покрыты силиконом полностью. Используются в любых условиях, в том числе в воде: в бассейнах и аквариумах.

Виды водозащищенности ленты

Многоцветная светодиодная лента RGB – это новый современный вид освещения, позволяющий украсить интерьер разнообразными световыми эффектами.

Видео

elquanta.ru

WS2811: микросхема для управления трехцветным RGB-светодиодом | hardware

Микросхема WS2811 компании Worldsemi является трехканальным драйвером для управления светодиодами стабилизированным током, при этом обеспечивается 256 градаций яркости по каждому каналу (обычно это R красный, G зеленый, B синий, RGB). В этой статье представлен перевод даташита "WS2811 Signal line 256 Gray level 3 channel Constant current LED drive IC".

Яркость светодиодов, подключенных к WS2811, управляется последовательным цифровым кодом, который формируется микроконтроллером. Данные при этом передаются всего лишь по 1 проводу. Цифровой сигнал управления проходит сквозь микросхему WS2811, так что несколько микросхем WS2811 могут быть объединены в длинную цепочку с сохранением возможности управлять каждым светодиодом в цепочке по отдельности.

[Особенности микросхемы WS2811]

Рабочее напряжение выходного порта до 12V. Имеется встроенный регулятор напряжения питания VDD, так что можно питать микросхему даже от 24V, если последовательно подключить гасящий напряжение резистор Может быть установлено до 256 уровней яркости, и при этом частота сканирования составляет не менее чем 400 Гц. Имеется встроенный узел восстановления формы входного сигнала данных, что обеспечивает отсутствие накапливания искажений на линии сигнала. Имеется встроенный узел сброса, который сбрасывает микросхему при включении и восстановлении питания. Сигнал от одной микросхемы к другой может быть передан через один сигнальный провод. Любые две точки между приемником и передатчиком сигнала могут находиться друг от друга на расстоянии более 10 м без необходимости дополнительных усилителей. При скорости обновления 30 fps (30 кадров/сек) модель каскадирования на низкой скорости позволяет соединить в цепочку не менее 512 точек, на высокой скорости можно соединить не менее 1024 точек. Данные передаются на скоростях до 400 и 800 Kbps (килобит/сек).

WS2811 могут применяться для создания декоративного освещения с помощью светодиодов (LED), а также для видеоэкранов либо информационных табло как внутри помещения, так и снаружи.

[Общее описание WS2811]

WS2811 имеет 3 выходных канала специально для управления LED. В микросхеме имеется встроенный продвинутый цифровой порт данных с возможностью усиления сигнала и восстановления его формы. Также в микросхему встроен точный внутренний генератор и программируемый источник постоянного выходного тока, рассчитанный на рабочее напряжение до 12V. Для снижения пульсаций напряжения питания 3 выходных канала разработаны с функцией задержки включения (delay turn-on function).

Микросхема использует режим обмена данными NZR (Non-return-to-zero, код без возврата к нулю ). После сброса при подаче питания (power-on reset), порт DIN принимает данные от внешнего контроллера, при этом первая микросхема собирает первые 24 бита данных, и затем передает их во внутреннюю защелку данных, при этом у остальных данных восстанавливается форма с помощью узла восстановления и усиления, и эти остальные данные передаются следующей в цепочке микросхеме через порт DOUT. После прохождения каждой микросхемы количество бит в общем потоке уменьшается каждый раз на 24 бита. Технология автоматического восстановления передаваемого сигнала данных устроена таким образом, что количество каскадируемых микросхем ограничивается только скоростью передачи и требуемой частотой обновления яркости светодиодов.

Данные, защелкнутые в микросхему (24 бита), определяют скважность сигнала выходных портов OUTR, OUTG, OUTB, управляющих светодиодами - применяется PWM (ШИМ, широтно-импульсная модуляция), так что от скважности импульсов выходных портов зависит яркость каждого канала. Все микросхемы в цепочке синхронно отправляют принятые данные на каждый сегмент, когда поступит сигнал сброса на входной порт DIN. Далее будут снова приниматься новые данные после завершения сигнала сброса. До поступления нового сигнала сброса управляющие сигналы портов OUTR, OUTG, OUTB остаются неизменными. Микросхема передает имеющиеся данные PWM на порты OUTR, OUTG, OUTB после приема сигнала сброса низкого уровня, еще в течение 50 мкс.

Часто микросхема WS2811 встраивается прямо в корпус RGB-светодиода (это решение применяют в популярных светодиодных лентах), такой светодиод называется 5050 RGB LED.

Отдельно микросхема WS2811 поставляется в корпусах SOP8 и DIP8.

В таблице ниже показано назначение ножек WS2811.

Мнемоника Описание функции вывода
1 OUTR Выходной сигнал PWM для управления яркостью красного светодиода (Red).
2 OUTG Выходной сигнал PWM для управления яркостью зеленого светодиода (Green).
3 OUTB Выходной сигнал PWM для управления яркостью синего светодиода (Blue).
4 GND Земля, общий провод, минус питания.
5 DOUT Выход сигнала данных (для каскадирования микросхем).
6 DIN Вход сигнала данных.
7 SET Установка низкоскоростного режима работы микросхемы (при подключении SET к VDD) или высокоскоростного режима (когда ножка SET никуда не подключена).
8 VDD Плюс напряжения питания.
Параметр Мнемоника Значение Ед. изм.
Напряжение питания VDD +6.0 .. +7.0 V
Выходное напряжение VOUT 12 V
Входное напряжение VI -0.5 .. VDD+0.5 V
Рабочая температура Topt -25 .. +85 oC
Температура хранения Tstg -55 .. +150 oC

Примечание: если напряжения на выводах превысят максимальное значение, то это может необратимо повредить микросхему.

[Электрические характеристики]

[Динамические характеристики]

TA = -20 .. +70oC, VDD = 4.5 .. 5.5V, VSS = 0V, если не указано что-то другое.

Параметр Мнемоника Условие MIN NOM MAX Ед. изм.
Рабочая частота Fosc1 - - 400 - КГц
Fosc2 - - 800 - КГц
Задержка передачи (время распространения сигнала) tPLZ CL=15 пФ, DIN->DOUT, RL=10 кОм - - 300 нс
Время спада tTHZ CL=300 пФ, OUTR/OUTG/OUTB - - 120 мкс
Скорость передачи данных FMAX Скважность 50% 400 - - кбит/с
Входная емкость CI - - - 15 пФ

[Интервалы времени для режима низкой скорости (Low Speed mode)]

В этой таблице показаны интервалы времени, которыми кодируются биты данных 0 и 1, и сигнал сброса.

Примечание: для режима высокой скорости все интервалы времени уменьшаются в 2 раза, но время сброса (reset time) остается неизменным.

Диаграммы поясняют принципы кодирования и передачи данных.

Микроконтроллер посылает данные для микросхем D1, D2, D3 и D4. Микросхемы соединены в цепочку, и данные, которые проходят через них (DIN -> DOUT), восстанавливаются и усиливаются. При этом от последовательности данных каждый раз отрезается по 24 бита данных, которые предназначены именно этой микросхеме после прохождения массива данных для всех микросхем следует сигнал сброса RES (импульс лог. 0 с длительностью не менее 50 мкс). После этого принятый уровень яркости (24 бита на микросхему) передается на выходы PWM OUTR, OUTG, OUTB. Вот так составлена последовательность 24 бит, которая кодирует уровни яркости каналов OUTR, OUTG, OUTB микросхемы (старший MSB бит идет первым):

R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0

[Стандартные схемы включения]

В этом примере каждый канал в светодиоде RGB управляется постоянным током 18.5 мА, яркость светодиода при этом определяется скважностью PWM (ШИМ). Благодаря стабилизации тока при снижении напряжения питания светодиоды сохраняют свою яркость и цветовую температуру. Для того, чтобы пульсации напряжения питания не влияли на работу микросхемы, рекомендуется использовать фильтрующую цепочку, состоящую из последовательного резистора номиналом на более 100 Ом и блокирующего конденсатора емкостью порядка 0.1 мкФ. Для предотвращения отражений сигнала и для обеспечения возможности горячего соединения в цепь сигнала должен быть включен последовательный резистор номиналом в 33 Ом.

Как и в предыдущем примере, светодиоды управляются стабилизированным током 18.5 мА. R1 используется для нормальной работы внутреннего стабилизатора напряжения микросхемы, его номинал должен быть 2.7 кОм. Обычно на красном светодиоде всегда падает меньше напряжение при том же самом токе, чем на светодиодах других цветов, и красный светодиод светится ярче. Поэтому канал OUTR должен иметь дополнительный резистор RR, сопротивление которого можно рассчитать по формуле:

12 - (3 * VLEDR)RR = ------------- кОм 18.5

В этой формуле VLEDR равно падению напряжения на одном светодиоде красной группы (обычно равно 1.8V .. 2V).

[Как устроена светодиодная RGB-лента]

На фото показана обычная влагозащищенная светодиодная RGB лента, построенная на основе технологии микросхем WS2811 (WS2811 waterproof LED Strip) длиной 5 метров, модель GE60RGB2811C. Обычно такая лента поставляется намотанной на бобину, вместе с крепежом для монтажа на стену. Для питания ленты нужен источник стабилизированного напряжения 5V 18A (потребление мощности 18 Вт на 1 метр). На концах ленты установлены коннекторы вход папа (сюда заходит цифровой сигнал и должно быть подключено питание) и выход мама (отсюда выходит цифровой сигнал и здесь также может быть подключено питание), благодаря чему ленты можно соединять друг с другом для увеличения общей длины.


Лента собрана на ленте из тонкого текстолита (гибкая двухсторонняя печатная плата) и устроена так, что ленту можно обрезать в любом месте для получения нужного размера.

Для управления RGB светодиодной лентой используют специальные контроллеры, которые программируются от компьютера через USB или с помощью карты SD. Контроллер может задавать сложный автоматический алгоритм управления лентой, некоторые могут даже работать как цветомузыка - с помощью встроенного микрофона анализируют звук и в такт мелодии управляют цветом ленты.


Оборудование SMART для RGB управления – основа вашего комфорта
RGB- и RGBW-источники света позволяют добавить ярких красок и динамики в обычное освещение, разнообразить обстановку в помещении и создать соответствующее случаю настроение.

Очередное обновление серии SMART поможет организовать удобное и надежное управление мультицветными источниками света. Среди новинок есть все, чтобы создать цветную динамическую подсветку для проектов разного масштаба.

Универсальный RGB-контроллер SMART-K8-RGB предназначен для управления мультицветными, двухцветными и диммируемыми светодиодными летами с рабочим напряжением 12-24 В. Увеличенная мощность (6 А на 1 канал) позволяет использовать его в больших проектах. Модель имеет встроенные динамические эффекты: последовательное переключение цветов, плавная смена цвета.
Четырехканальный контроллер SMART-K13-SYNC позволяет не только управлять светодиодной лентой RGBW, но и транслировать сигнал по RF-каналу аналогичным контроллерам на расстояние до 15 метров. При этом общая длина системы может достигать 100 метров. Дополнить систему можно конвертером SMART-K10-RF, который позволит управлять системой освещения со смартфонов по сети WiFi.

Четырехканальный декодер SMART-K15-DMX преобразует сигнал по цифровому стандарту DMX512 в ШИМ-сигнал для управления светодиодными лентами и другими источниками света с напряжением питания 12, 24 и 36 В. Позволяет установить нужный DMX-адрес. Модель может использоваться как автономный DIM-, RGB-, RGBW-контроллер.
В случаях, когда мощности контроллера не хватает для подключения необходимой длины светодиодной ленты, в систему монтируются усилители. Серия SMART пополнилась четырехканальными усилителями SMART-RGBW-С2 (ток нагрузки 4x350mA) и SMART-RGBW-С3 (ток нагрузки 4x700mA), а также RGBW-усилителем на DIN рейку SMART-RGBW-DIN.

Для удобного управления трех- и четырехканальными контроллерами идеально подойдут универсальный радиопульт SMART-R21-MULTI и встраиваемая TOUCH-панель Sens SMART-P22-RGBW.
Пульт имеет сенсорное кольцо для точной регулировки цвета свечения и интуитивно понятные кнопки для управления яркостью, выбора цвета, сохранения двух пользовательских режимов, запуска динамических программ и изменения их скорости. Поддерживает управление в одной световой зоне.

Встраиваемая сенсорная панель SMART-P22-RGBW со встроенным мастер-контроллером выполнена в современном лаконичном дизайне и имеет отключаемое звуковое сопровождение. Выбор цвета свечения осуществляется с помощью чувствительной сенсорной полосы. Представленная модель может управлять неограниченным числом контроллеров, а также сама управляться с пульта ДУ.
OPTOMLEDS.RU - Высококачественное светодиодное оборудование и сопутствующие материалы для создания систем освещения различных уровней сложности.
▪️ Разработка светодиодных решений индивидуально, под заказ
▫️ Контроль качества производства
▪️ Широкий ассортимент продукции - более 5000 актуальных наименований
▫️ Складская программа - более 80% наименований постоянно присутствует на складе
▪️ Совместимость устройств и удобный подбор товара
▫️ Техническое сопровождение - инструкции, схемы подключения, 3D-модели, IES-файлы
▪️ Техническая поддержка и гарантийное обслуживание
▫️ Отдел исследований и контроля качества: тестирования, испытания, входной контроль
▪️ Фотометрическая лаборатория для измерения параметров светотехнических устройств

By

Управление освещением - серия SMART

В ассортименте появились новые SMART модели контроллеров, пультов ДУ и усилителей. Таким образом, возможности линейки SMART значительно расширились, и на ее основе можно проектировать системы управления освещением различной сложности. Значительно расширилась коллекция пультов ДУ серии MULTI для управления несколькими источниками света DIM/MIX/RGB/RGBW. Теперь они представлены в разных вариантах дизайна и цветах корпуса.

023027 Пульт SMART-R6-DIM (1 зона, 2.4G)
023474 Пульт SMART-R23-DIM White (4 зоны, 2.4G)
023478 Пульт SMART-R27-RGBW White (1 зона, 2.4G)
023476 Пульт SMART-R25-RGBW White (4 зоны, 2.4G)
022667 Пульт SMART-R16-MULTI (4 зоны, 2.4G)
023471 Пульт SMART-R20-MULTI White (4 зоны, 2.4G)
Среди новинок особе внимание стоит уделить двум новым контроллерам. Одноканальный диммер предназначен для управления одноцветной светодиодной лентой и позволяет привязать до 10 пультов ДУ и панелей.

023829 Усилитель SMART-DIM (12-24V, 1x8A)
Пятиканальный RGBW-CCT контроллер позволяет управлять одновременно цветом свечения и цветовой температурой. При совместном использовании с пультами серии MULTI пользователь получает всего 2 устройства с практически неограниченными возможностями. Встроенные программы управления освещением помогут выбрать нужный сценарий для правильного настроения.

023822 Контроллер SMART-K14-RGB-WW/DW (12-24V, 5x4A)
024184 Диммер SMART-D3-DIM (12-24V, 8A)
Также стоит отметить появление в линейке SMART серии усилителей. С их помощью можно подключать большее количество источников освещения к одному контролеру, значительно усиливая его сигнал. Усилители представлены тремя моделями: DIM, RGB и RGBW для охвата всей линейки продуктов SMART.

023830 Усилитель SMART-RGB (12-24V, 3x6A)
023831 Усилитель SMART-RGBW (12-24V, 4x5A)

SMART – проще не бывает!
Магазин: Optomleds.ru

By

Серия SMART: Управление светом по новому
В ассортименте нашего интернет-магазина появились новинки моделей серии SMART, предназначенных для организации различных по своей сложности систем управления основным или декоративным освещением.

Пульт R7-DIM
4-х зонный радиопульт с лаконичным дизайном и удобным корпусом применяется для управления одноцветными источниками света. Устройство обладает функцией памяти для записи выбранного режима подсветки.

023028 Пульт SMART-R7-DIM (4 зоны, 2.4G)
Пульты R9 и R14
Кнопочные радиопульты способны управлять одноцветными или мультицветными светодиодными лентами в одной зоне. Сенсорное кольцо на корпусе позволяет выбирать цвет или яркость свечения. Устройства могут управлять неограниченным количеством контроллеров.

023032 Пульт SMART-R9-DIM (1 зона, 2.4G)
022671 Пульт SMART-R14-RGBW (1 зона, 2.4G)
Пульты R22, R24, R26 и R28
Стильные радиопульты, корпус которых сделан из специального мягкого пластика Soft Touch чёрного света, позволяют управлять одноцветными или RGBW источникам света через неограниченное количество контроллеров.
R22-MULTI – уникальная модель, предназначенная для управления DIM/MIX/RGB/RGBW светодиодными лентами. Устройство обладает 4-мя зонами управления и 2-мя слотами памяти для записи пользовательских настроек. С помощью сенсорного кольца можно легко выбрать необходимый цвет или яркость свечения.

023473 Пульт SMART-R22-MULTI Black (4 зоны, 2.4G)

R24-DIM – предназначен для управления одноцветными источниками света. Модель также имеет 4 зоны управления. В память устройства записываются до 4 понравившихся режимов свечения. Специальные кнопки на пульте позволяют выбрать предустановки яркости.

023475 Пульт SMART-R24-DIM Black (4 зоны, 2.4G)

R26-RGBW и R28-RGBW – популярные версии пультов используются для управления мультицветными светодиодными лентами и другими источниками света. Модели отличаются количеством зон управления и слотов памяти: R28 имеет 4 слота памяти и работает в одной зоне, R26 управляет освещением в 4 зонах и имеет 2 слота памяти.

023477 Пульт SMART-R26-RGBW Black (4 зоны, 2.4G)
023479 Пульт SMART-R28-RGBW Black (1 зона, 2.4G)
С помощью точного сенсорного кольца можно выбрать цвет свечения. Функционал кнопок позволяет выполнять регулировку насыщенности цвета, изменять динамические сцены и режим подсветки.
Панель P6-RGBW
Встраиваемая сенсорная панель способна управлять RGBW светодиодными источниками света. Сенсорный круг позволяет выполнять удобную и точную регулировку освещения. Особенность модели заключается в том, что она может работать в качестве независимого контроллера, а также управляться через радиопульты: к устройству подключается до 10 пультов или других панелей.

023055 Панель Sens SMART-P6-RGBW (5-24V, 2.4G)
Панель P3-DIM
Встраиваемая панель с роторным вращателем предназначена для управления одноцветными источниками света. Устройство с функцией диммирования способно работать в качестве независимого диммера при полной совместимости со всеми пультами и панелями серии SMART аналогичной функциональности. Современный и простой дизайн модели позволяет её использовать для организации системы управления освещением в любом интерьере.

023030 Панель Rotary SMART-P3-DIM (5-24V, 2.4G)
Конвертер K10-RF
Новая модель применяется для дистанционного управления контроллерами серии SMART. Конвертер обеспечивает преобразование входного сигнала Wi-Fi от мобильных устройств в сигнал RF. Также устройство позволяет управлять динамическими эффектами подсветки. Благодаря встроенной памяти можно записать выбранный режим освещения.

023063 Контроллер SMART-K10-RF (5-24V, WiFi)
Новинки серии SMART позволят создать лучшую систему управления светодиодным освещением в вашем доме.
2 года гарантии на все новинки серии SMART.
Магазин: Optomleds.ru
У нас действуют специальные условия сотрудничества для дизайнеров, архитекторов, декораторов и проектных организаций.

By

Беспроводное управление светом
В 2017 году уже никого не удивишь беспроводным управлением, которое производится с помощью пульта дистанционного управления на ИК-излучение или радиочастотах. Можно управлять с помощью мобильных устройств через сети Wi-Fi и персональные сети Bluetooth. Все устройства, с помощью которых производится управление, нуждаются в подзарядке или замене батареек. Но, что Вы скажете, если Вам больше не придется подзаряжать устройство или менять батарейки и штробить стены для прокладки провода для приемника сигнала? Благодаря технологии EnOcean это стало возможно!

Главными преимуществами технологии EnOcean является: получение электроэнергии из окружающей среды для работы устройств и потреблении ими минимального уровня электроэнергии. Благодаря преобразователям тепловой и механической энергий, устройства радиосигнала не нуждаются в питании от сети или батареек. Применение системы EnOcean, основанной на беспроводном управлении, значительно снижает затраты при строительстве или ремонте, а также увеличивает экономию электроэнергии. Кроме того, светотехнические устройства с технологией EnOcean обладают гибкостью при их монтаже.
Панель управления SR-EN9001-RF-UP White
Благодаря своему современному и, в тоже время, лаконичному дизайну модель гармонично вписывается в любой интерьер. С помощью панели осуществляется простое управление одноцветной светодиодной лентой: можно включать/выключать и регулировать яркость ее свечения.

019038 SR-EN9001-RF-UP White (DIM, 1 зонa)
Модели не требуют подключения к электросети или установки батареек. Нажав на клавишу, происходит преобразование кинетической энергии в электроэнергию, которой хватает для передачи радиосигнала контроллеру. Данная технология обеспечивает надежную работу устройств на длительный период времени. Для установки панелей не требуется выполнять сложный монтаж с отделкой стен и прокладкой проводов.
Контроллер SR-EN9101Р
Контроллер используется для управления светодиодными лентами и модулями. Устройство с 1 каналом управления взаимодействует с панелью управления через радиосигнал, который действует на расстоянии до 30 м. Такая особенность контроллера позволяет организовать систему дистанционного управления светом в достаточно большом помещении.

019039 SR-EN9101P (12-36V, 240-720W)
Серия панелей управления и контроллеров SR-EN с технологией EnOcean обладает легкостью и простотой внедрения в уже выполненные проекты. Модели могут разместиться практически в любом месте без разработки проектов и выполнения монтажных работ по подводке кабеля.
Магазин: Optomleds.ru
У нас действуют специальные условия сотрудничества для дизайнеров, архитекторов, декораторов и проектных организаций.

By

Необходимо готовое решение (комплект подсветки) с возможностью сохранения в контроллере 6-ти сценариев подсветки и последующее их переключение
подсветка включает: 6 зон (потолок, карниз, пол, колонна...) контроллер должен управлять раздельно 6 ЗОНАМИ RGB подсветки используются светодиодные ленты RGB или RGB+W (14,4w/метр) длина светодиодной ленты 5-ти зон подсветки составляет 7 метров на каждую зону, 1 зона- 2,6 метра, дополнительный участок подсветки к 6 зоне- 16 метров ленты Задача: каждый сценарий это определенные зоны подсветки и цвета их свечения. Пользователь в последующем выбирает только один из сценариев. Т.е. грубо 6 кнопок на ПДУ для переключения сценариев подсветки. Интересна возможность управления с ПК или смартфона, вариант минимум с кнопок на контроллере или ПДУ

Сценарий подсветки №1:



Сценарий подсветки №2:
Зона подсветки №3 - Голубой цвет
Зона подсветки №1 - Зеленый цвет
Зона подсветки №2 - Оранжевый цвет

Остальные группы должны быть выключены.

Сценарий подсветки №3:
Зона подсветки №3 - Темно-синий цвет
Зона подсветки №4 - Красный
Зона подсветки №6 - Белый цвет
Остальные группы должны быть выключены.

Сценарий подсветки №4:
Зона подсветки №3 - Темно-синий цвет
Зона подсветки №4 - Красный цвет
Зона подсветки №5 - Оранжевый цвет
Остальные группы должны быть выключены.

Сценарий подсветки №5:
Зона подсветки №2 - Оранжевый цвет



Остальные группы должны быть выключены.

Сценарий подсветки №6:
Зона подсветки №3 - Желтый цвет
Зона подсветки №1 - Синий цвет
Зона подсветки №2 - Зеленый цвет
Зона подсветки №6 - Голубой цвет
Остальные группы должны быть выключены.

By

Профессиональное управление освещением, подсветкой
Контроллеры, диммеры с пультом ДУ (1-8 зон)

Контроллеры, диммеры с пультом ДУ (1-4 зоны)

WiFi-RF конвертер

MIX контроллеры и диммеры

Диммер EnOcean, KNX

Диммер с управлением 0-10V

Контроллеры и диммеры DMX512

Декодер DMX512

Контроллеры и диммеры DALI

Диммеры, выключатели с датчиками

Усилитель сигнала

Диммер с выходом тока

RGB Контроллеры с пультом ДУ

Усилители RGB(W)

Диммер с пультом ДУ

Диммер с управлением 0-10V

Управление DMX 512

Управление DALI

Системы управления светодиодным освещением серии SR
Системы SR LUX управления светом в доме, квартире (на основе популярного метода ШИМ-регулирования):
– Диммеры для управления яркостью светодиодных лент;
– Контроллеры для управления мультицветными RGB/RGBW LED лентами;
Системы SR LUX для профессионального использования:
– Протокол DALI, диммеры и панели управления;
– Протокол DMX, декодеры и контроллеры;
Тщательно продуманная система SR предоставляет широкие возможности по выбору элементов управления:
– Кнопки и выключатели;
– Стильные дистанционные пульты;
– Встраиваемые панели;
В серии SR практически все устройства управления взаимозаменяемые, система легко обновляется,
пульты управления можно легко заменить в случае утраты или повреждения.
Гарантия на любое оборудование серии SR – 3 года.
Для проектов предоставляется расширенная гарантия 5 лет.
Cерия 1009 ШИМ:
Пульты, диммеры, контроллеры, панели, специальное оборудование

Серия 2501 ШИМ:
Пульты, диммеры и контроллеры, панели

DMX:
Декодеры, декодеры тока и контроллеры, панели

DALI:
Диммеры, панели

Готовые комплекты ШИМ:
Диммеры с датчиком, выключатели с датчиком

By

Wi-Fi RGB контроллер для управления светодиодными RGB светильниками, лентами, линейками с помощью устройств на платформах iOS и Android
Управление многоцветной RGB подсветкой стало еще проще с интуитивно понятным интерфейсом программы “Magic Color”, вам не придется искать по всему дому пульт управления подсветкой, управляйте подсветкой с помощью вашего телефона, регулируйте яркость и цвет свечения. Создайте неповторимую атмосферу у себя дома для романтического ужина или используйте подсветку в качестве ночника. Вы можете подобрать любой цвет светодиодной подсветки для вашего интерьера, соответствующий вашему настроению: оранжевый, жёлтый, белый, розовый и т.д. Мощность контроллера WiFi при напряжении: 12V - 144Вт, 24V - 288Вт.

Короткое нажатие кнопки перезагрузки: смена сценария, 20 вариантов. Длительное нажатие (более 20 секунд): сброс настроек.
Wifi SSID для подключения "LEDnetXXXXXXXXXX" Пароль: "88888888" IP: 192.168.10.1
Если вы решите установить подсветку оснащенную wifi контроллерами в разные комнаты, то вы легко буду управлять всем освещением при помощи всего одного приложения. Вы сможете контролировать как каждый контроллер в отдельности, так и всё освещение сразу.
WiFi RGB контроллер предназначен для управления многоцветной led продукцией с рабочим напряжением DC 7.5-24V, с поддержкой ШИМ-контроллеров (внешним управлением), пример: (4 провода на выходе)

Схемы подключения:

Если большая протяженность подсветки или мощности контроллера не хватает на все светильники, потребуется RGB amplifier (rgb усилитель) + отдельное питание к нему:

КУПИТЬ ЗА 1 538 РУБЛЕЙ с бесплатной доставкой

By

72 Лампочки
Первоначально, у нас была идея, повесить в неизменном виде, обычные лампы накаливания на потолок и контролировать их с помощью банка реле. Но несколько экспериментов доказали, что это было легче сказать, чем сделать. Трюк с массивом, который мы хотели реализовать, оказался практически невыполним. Для того, что бы сделать массив 6х12, нам необходимо было подключить 72 лампы по отдельности, что ведет к огромному количеству проводов и прочим проблемам.
Есть еще несколько серьезных проблем, связанных с обычными лампами накаливания. Прежде всего, они страшно не эффективные, потребляемая мощность освещением из 72 ламп (даже при минимальной яркости 15-20 ватт на лампу) получится очень большой. Во-вторых, невозможно получить контроль яркости, который ограничивает количество классных визуальных эффектов, которые можно реализовать в этом проекте. Наконец, работа с высоким напряжением на потолке, заставляла нас изрядно понервничать.
В конце концов, мы остановились на светодиодах. Они имеют низкое напряжение питания, относительно низкую потребляемую мощность, и их яркость можно регулировать с помощью широтно-импульсной модуляции (в дальнейшем просто ШИМ). Единственная проблема со светодиодами была в их размере, они маленькие, поэтому выглядят не очень интересно. Свисая с потолка, они не имеют достаточного веса, чтобы вытянуть провод и висеть ровно, потому что провод имеет тенденцию скручиваться по спирали как был намотан в катушке. Мы экспериментировали с различными способами визуализации светодиодов, устанавливая светодиоды в пластик и клей, чтобы делать их визуально более привлекательными. Но, в основе своей идеи, мы действительно хотели, чтобы они выглядели как обычные лампочки. Нашим окончательным решением было взять 72 обычные лампы накаливания, убрать из них внутренности и установить светодиодную начинку.

Обычные лампочки на самом деле не предназначены для разборки, поэтому это оказалось достаточно сложной и специфической задачей. Для ускорения процесса, я обратился за помощью нескольких коллег, и мы начали вытягивать керамические изоляторы из всех ламп. Я старался не повредить матовое покрытие стеклянной колбы, потому что надеялся, что покрытие стекла поможет рассеивать светодиодный свет (если бы я его повредил, то на лампах были бы заметны яркие проблески, чего нам очень не хотелось). Когда работа по извлечению внутренностей была закончена, я приступил к установке светодиодной начинки. В каждую колбу был помещен светодиод с припаянным проводом, провод фиксировался к цоколю при помощи капли горячего клея.
После, все лампы были протестированы, путем простого подключения к батарейке. Следующей моей задачей, было определение того, как индивидуально управлять 72-мя светодиодами, с минимальной головной болью и как это вообще возможно …
Все под контролем
Есть много способов, чтобы контролировать целую кучу светодиодов. Например, мультиплексирование. Это хороший способ, чтобы сэкономить контакты GPIO, но чтобы сделать мультиплексирование 72-х светодиодов все равно нужно 9 контактов. Для управления проектом, я использовал контроллер Arduino Pro Mini, однако при его одиночном использовании, не оставалось достаточно свободных контактов для подключения датчиков и других различных забав. Использование пары регистров сдвига было бы достойным способом, чтобы индивидуально управлять всеми светодиодами, но это в случае, если бы все, что я хотел сделать, это включить или выключить светодиоды. Но я очень хотел управлять яркостью светодиодов.

В конце концов, лучшим инструментом для расширения архитектуры, оказался драйвер TLC5940 PWC. Драйвер TLC5940 способен управлять 16-ю каналами с ШИМ имеющими разрядность 12 бит! А это 4096 уровней яркости! Самое замечательно то, что эти драйверы могут быть соединены вместе последовательно, и при этом останется то же самое количество IO контактов (контакты ввода-вывода) для управления 16-ю светодиодами с одного драйвера, поэтому я легко могу собрать схему для управления 72-мя светодиодами. Я просто спаял вместе 5 секционных плат TLC5940 в линию и объединил их собственным каналом ШИМ.
Все математические и графические вычисления в этом проекте выполняет контроллер Arduino Pro Mini. Это мой любимый Arduino контроллер из-за своих компактных размеров, а это именно то, что мне было необходимо в этом проекте, чтобы сэкономить место.
Операция по обеспечению питанием всего проекта – это еще один вызов! Некоторые компоненты требуют напряжения 3V, некоторые 5V, при этом источник питания должен обладать достаточной мощностью, чтобы зажечь все 72 светодиода. Как ни странно, но для решения этого вопроса подошел старый блок питания от компьютера. Он выдает все виды требуемого напряжения постоянного тока – 12V, 5V и 3.3V. Также они являются автономными, имеют небольшие регулировки и потребляют небольшой ток.
Для всех силовых и управляющих компонентов необходимо место, где их можно было бы расположить. Поэтому я построил простой шкаф из OSB, приделал к нему ножки, и дополнительно покрыл лаком. Компоненты располагаются на открытой полке, которую при необходимости можно закрыть съемными панелями. Внутри шкафа я расположил розетку и запитал все через выключатель на передней панели, что позволяет с легкостью отключить все элементы.

После того, как шкаф управления был собран, пришло время, чтобы сделать тяжелые электромонтажные работы: Индивидуально подвесить к потолку 72 светодиодные лампы …
Электромонтажные работы
Ввиду того, что я хотел сделать светодиодный массив на потолке, каждая светодиодная лампа должна была быть подвешена на собственном кабеле идущего прямо от шкафа управления. Это создало проблему по двум причинам, во-первых нам потребовалось бы очень много кабеля, а во-вторых, спрятать такой большой пучок проводов практически невозможно. Поэтому, решение этих вопросов я начал с выбора хорошего многожильного кабеля. Я решил, что будет намного проще убирать по несколько жил из кабеля, двигаясь к последней лампе, чем проложить 144 кабеля отдельно, и затем их еще и спрятать. После ознакомления с рынком кабельной продукции, которую можно купить оптом, я, наконец, остановился на обычном сетевом кабеле для компьютерных сетей!
Мы использовали сетевой кабель категории CAT 5. Он имеет достаточное для нас количество жил, а то, что он состоит из витых пар, намного упростило нам жизнь с подключением светодиодов.
Поскольку, работа по подвеске ламп осуществляется на потолке, то мне очень не хотелось упасть с 1,5 метровой высоты. Поэтому сначала мы закрепили на потолке специальные крепления в виде крючков, на которые в дальнейшем подвесили наши провода с лампами. Физическое соединение проводов с лампами мы произвели на земле, предварительно промерив, все необходимые расстояния. В итоге у нас получилось шесть кабельных бухт содержащих по 12 светодиодных ламп. Дальше я уже без труда, но с небольшой помощью, смог развесить лампы на крючки.

После выполнения этого проекта я узнал несколько нюансов при прокладке жгутов проводов. И я с удовольствием поделюсь ими с вами ниже:
Семь раз отмерь, один раз отрежь - да, старая поговорка, но с неизменным смыслом. Нет ничего хуже, чем испортить 15 метровый жгут проводки, отрезав не от той жилы.
Оставляйте запас провода – даже если вы на 100% уверены в своих измерениях, сделайте запас в 15-20см, это вам не помешает, а отрезать лишнее всегда можно.
Сечение провода – длинные участки проводов имеют значительное сопротивление, которое зависит от сечения провода, и на них происходит падение напряжения. Если вы делаете мощные проекты, то не поленитесь и просчитайте требуемое сечение провода.
Тестирование – проверяйте свою работу на разных этапах и участках. Найти ошибку в уже полностью собранном и установленном жгуте довольно сложно!
Маркировка – создайте собственную цветовую маркировку кабелей, запишите ее или сфотографируйте. Помечайте провода до установки или связки в жгуты.
Интерактивность
Целая куча огней, объеденных в сетку, довольно занимательная штука, но только если она реагирует на окружающие события. Без этого, у нас получился бы просто телевизор для просмотра изображений с мега низким разрешением. Для начала работы проекта, я решил создать несколько различных режимов работы, которые будут реагировать по-разному, на окружающие события. Для реализации этой задачи, хорошо подходит контроллер ATmega328 от компании Arduino.
Я провел несколько дней, создавая новые программы с подключением различных датчиков, экспериментировал с различными идеями, чтобы узнать, какие виды взаимодействия будут наиболее привлекательные и стабильные.
Мой любимый эксперимент использует ультразвуковые дальномеры в качестве устройства ввода. Ультразвук удобен, стабилен и не зависит от изменения окружающего света. А также имеет достаточно большую дальность и широкую зону обнаружения, чтобы работать в качестве монитора общей активности, при правильном расположении. Я использовал два дальномера Maxbotix Range Finders, и установил их по разным концам конференц-зала. Каждый подключен к отдельному аналогово-цифровому преобразователю контроллера Arduino. Это позволяет мне считывать с них данные очень быстро, отдельно друг от друга. Я просто приклеил их к стенам, они настолько малы, что вы вряд ли заметите.
Наряду с дальномерами, я решил добавить какое-нибудь взаимодействие с окружающими звуками. К сожалению, реакция на окружающий звук была непредсказуемой. Наш мозг, так хорошо фильтрует звуки, что мы часто и не понимаем, как шумно в комнате, пока не попытаемся контролировать звук при помощи компьютера. Разница между "тихой" комнатой и залом для встречи больше заметна в частотном спектре, чем в фактическом уровне громкости.
Но я все же хотел добавить один Spectrum Shields (контроллер оцифровки звука) к нашему проекту, для создания визуализации музыки. Это очень хорошо смотрится, особенно на больших дисплеях. В связи свыше изложенными трудностями, я решил использовать чистый источник музыки, подключенный к контроллеру оцифровки звука. Поначалу, это была прямая линия с наушников на плеере, но позже я решил добавить беспроводную передачу аудио по каналу Bluetooth. Для этого я использовал адаптер SparkFun Audio Bluetooth Breakout - RN-52.

Я изготовил небольшой корпус для адаптера Bluetooth Audio, в который поместил пару динамиков, а также несколько кнопок для регулировки и окошко для светодиода статуса адаптера Bluetooth. Корпус повесил на стене, где он будет легко доступным, а также провел кабель в шкаф управления для подключения к питанию. Этот же кабель осуществляет передачу звукового сигнала от одного из динамиков к контроллеру оцифровки звука Spectrum Shields, который я подключил к питанию 3V от контроллера Arduino Pro Mini через адаптер преобразования логических уровней Logic Level Converter (преобразует 3V в 5V, и наоборот).

Теперь рассмотрим все вместе
Аппаратная часть
Представленная схема, показана уже с учетом моих изменений, о которых я расскажу ниже:

В схеме выше, я заменил контроллер оцифровки звука Spectrum Shields на микросхему графического эквалайзера Graphic Equalizer Display Filter - MSGEQ7

Убрал некоторые пассивные элементы и избавился от преобразователя логических уровней.
Внешние датчики и устройства подключаются к контроллеру Arduino Pro Mini к следующим контактам:
Ultrasonic Range Finders (дальномеры) - к выводам A0 и A1
Momentary Pushbuttons (кнопки) – к выводам A6 и A7
Питание для микросхемы MSGEQ7 - вывод A3
Как соединены между собой платы драйверов TLC5940s, очень хорошо описано здесь:
http://bildr.org/2012/03/servos-tlc5940-arduino/
На схеме выше, группа проводов с надписью "To Control Panel" имеет цветовую маркировку в соответствии с диаграммой ниже, так что вы можете проследить соединения из одного чертежа к другому.
Это панель управления, описанная в разделе «Интерактивность». На самом деле тут не так уж и много чего происходит. Адаптер РН-52 Audio Bluetooth Breakout выполняет большую часть работы. С аудио выхода берется дифференцированный сигнал, достаточный для микросхемы MSGEQ7, я просто взял положительный сигнал с одного из динамиков и подвел его к микросхеме.
Линия, которая с надписью "To PSU Enable Line" - это питание (земля) для всего проекта. Она подключается через выключатель на землю от блока питания (обычно это зеленый провод во всех разъемах БП).

Программное обеспечение
После того, как ваша аппаратная часть полностью собрана, вам необходимо загрузить в контроллер программный код, который будет определять поведение вашего светодиодного массива. Подробно ознакомится с программным кодом и его описанием можно в оригинальной инструкции доступной по адресу:
https://learn.sparkfun.com/tutorials/interactive-hanging-led-array
Момент истины!

Последние материалы раздела:

Мобильный интернет Мегафон
Мобильный интернет Мегафон

Опция закрыта для подключения. Теперь для покупки дополнительного трафика МегаФон предлагает абонентам серию пакетов «Твой интернет» Для начала,...

Как на самсунг включить интернет включая мобильный
Как на самсунг включить интернет включая мобильный

10.04.2017 Frenk 8 комментариев Чтобы получить полную отдачу от планшета или телефона самсунг галакси а3, дуос, j1, а5, j3, j5, j2, гранд...

Несколько простых схем питания светодиодов Схема фонарика на одной батарейке
Несколько простых схем питания светодиодов Схема фонарика на одной батарейке

Если вы когда-нибудь захотите запитать светодиод от одной батарейки, то рано или поздно наткнетесь на схему под названием Joule Thief- вор...